Javelin Stamp Manual

Version 1.1

WARRANTY

Parallax Inc. warrants its products against defects in materials and workmanship for a period of 90 days from receipt
of product. If you discover a defect, Parallax Inc. will, at its option, repair or replace the merchandise, or refund the
purchase price. Before returning the product to Parallax, call for a Return Merchandise Authorization (RMA)
number. Write the RMA number on the outside of the box used to return the merchandise to Parallax. Please enclose
the following along with the returned merchandise: your name, telephone number, shipping address, and a description
of the problem. Parallax will return your product or its replacement using the same shipping method used to ship the
product to Parallax.

14-DAY MONEY BACK GUARANTEE

If, within 14 days of having received your product, you find that it does not suit your needs, you may return it for a
full refund. Parallax Inc. will refund the purchase price of the product, excluding shipping/handling costs. This
guarantee is void if the product has been altered or damaged. See the Warranty section above for instructions on
returning a product to Parallax.

COPYRIGHTS AND TRADEMARKS

This documentation is copyright 2005 by Parallax Inc. By downloading or obtaining a printed copy of this
documentation or software you agree that it is to be used exclusively with Parallax products. Any other uses are not
permitted and may represent a violation of Parallax copyrights, legally punishable according to Federal copyright or
intellectual property laws. Any duplication of this documentation for commercial uses is expressly prohibited by
Parallax Inc.

BASIC Stamp, Stamps in Class, Board of Education, Boe-Bot SumoBot, SX-Key and Toddler are registered
trademarks of Parallax, Inc. If you decide to use registered trademarks of Parallax Inc. on your web page or in
printed material, you must state that "(registered trademark) is a registered trademark of Parallax Inc.” upon the first
appearance of the trademark name in each printed document or web page. HomeWork Board, Parallax, and the
Parallax logo, are trademarks of Parallax Inc. If you decide to use trademarks of Parallax Inc. on your web page or
in printed material, you must state that "(trademark) is a trademark of Parallax Inc.”, “upon the first appearance of the
trademark name in each printed document or web page. Other brand and product names are trademarks or registered
trademarks of their respective holders.

ISBN #HHHHHHHHEHHHHE

DISCLAIMER OF LIABILITY

Parallax Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of
equipment or property, or any costs of recovering, reprogramming, or reproducing any data stored in or used with
Parallax products. Parallax Inc. is also not responsible for any personal damage, including that to life and health,
resulting from use of any of our products. You take full responsibility for your BASIC Stamp application, no matter
how life-threatening it may be.

INTERNET DISCUSSION LISTS

We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible
from www.parallax.com via the Support — Discussion Forums menu. These are the forums that we operate from our
web site:

. BASIC Stamps — This list is widely utilized by engineers, hobbyists and students who share their
BASIC Stamp projects and ask questions.

. Stamps in Class” — Created for educators and students, subscribers discuss the use of the Stamps in
Class educational program in their courses. The list provides an opportunity for both students and
educators to ask questions and get answers.

. Parallax Educators —Exclusively for educators and those who contribute to the development of
Stamps in Class. Parallax created this group to obtain feedback on our curricula and to provide a
forum for educators to develop and obtain Teacher’s Guides.

* Translators — The purpose of this list is to provide a conduit between Parallax and those who
translate our documentation to I other than English. Parallax provides editable Word
documents to our translating partners and attempts to time the translations to coordinate with our
publications.

* Robotics — Designed exclusively for Parallax robots, this forum is intended to be an open dialogue
for a robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates.
The Boe-Bot", Toddler”, SumoBot", HexCrawler and QuadCrawler robots are discussed here.

. SX Microcontrollers and SX-Key — Discussion of programming the SX microcontroller with
Parallax assembly language SX-Key" tools and 3rd party BASIC and C compilers.

. Javelin Stamp — Discussion of application and design using the Javelin Stamp, a Parallax module
that is programmed using a subset of Sun Microsystems’ Java" programming language.

ERRATA

While great effort is made to assure the accuracy of our texts, errors may still exist. If you find an error, please let us
know by sending an email to editor@parallax.com. We continually strive to improve all of our educational materials
and documentation, and frequently revise our texts. Occasionally, an errata sheet with a list of known errors and
corrections for a given text will be posted to our web site, www.parallax.com. Please check the individual product
page’s free downloads for an errata file.

Table of Contents

PREFACE vil

—

N

w

MANUAL ORGANIZATION ...etiiieiieiietetesiestessesteeseestesteseestessesaesbessesseeseensessessessesnesbeeseeneenean
JAVA PROGRAMMERS — READ THIS
BASIC STAMP ENTHUSIASTS —READ THIS ..
MANUAL CONVENTIONS
RESOURCES AND TECHNICAL SUPPORT
FREE DOWNLOADS FROM WWW.JAVELINSTAMP.COM

ACKNOWLEDGEMENTS
: INTRODUCTION 1
THE JAVELIN STAMP AND ITS FEATURES.cututrieiiiieiiiieinieieieieie ettt 1

PROGRAMMING LANGUAGE - JAVATM FOR THE JAVELIN STAMP .
JAVELIN STAMP INTEGRATED DEVELOPMENT ENVIRONMENT ...
VIRTUAL PERIPHERALS

Background VPs...

Foreground VPs...
HOW THE JAVELIN STAMP WORKS ..
JAVELIN STAMP HARDWARE
EQUIPMENT AND SYSTEM REQUIREMENTS ..
USEFUL HARDWARE

: JAVELIN QUICK START 11

HARDWARE SETUP
INSTALLING THE JAVELIN STAMP IDE...
RUNNING THE JAVELIN STAMP IDE AND LOADING A TEST PROGRAM ..
DEBUGGING ENVIRONMENT
ONLINE HELP
1/0 EXAMPLE
DID THAT WORK? — TROUBLE SHOOTING .
WHERE TO NEXT? ...ttt ettt ettt ettt ettt ettt sttt st sne e 32

: BEGINNERS GUIDE TO EMBEDDED JAVA PROGRAMMING........ccoreuerereruruenes 35

THE CLASS WRAPPER AND MAIN METHOD
DECLARING CONSTANTS, VARIABLES, AND ARRAYS
PERFORMING CALCULATIONS...
MAKING DECISIONS
REPETITIVE OPERATIONS
DISPLAYING MESSAGES FROM THE JAVELIN .
SENDING MESSAGES TO THE JAVELINcueittitiitietieiietietetesiesteeetsieeieentetesesbessessesbeeneeneeneens

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page i

Table of Contents

CREATING A METHOD
CREATING AND USING A LIBRARY CLASS...

4: APPLICATION EXAMPLES — CIRCUTS AND PROGRAMS 59

CIRCUITS AND EXAMPLE CODE
ABOUT SOLDERLESS BREADBOARDS
PUSHBUTTON AND LED REVISITED
DIGITAL TO ANALOG CONVERSION ..
ANALOG TO DIGITAL CONVERSION ..
MEASURING RESISTIVE AND CAPACITIVE ELEMENTS..... 64
CONTROLLING A SERVO WITH A BACKGROUND PWM OBJECT
COMMUNICATING WITH PERIPHERAL ICS
COMMUNICATING WITH OTHER COMPUTERS
COMMUNICATING WITH PERIPHERAL DEVICES

5: USING THE JAVELIN STAMP IDE 81

STARTING THE IDE ..ottt
SETTING GLOBAL OPTIONS..
STARTING A PROJECT
BUILDING YOUR PROGRAM ..
DEALING WITH ERRORS
USING THE DEBUGGER TO LOOK INSIDE THE JAVELIN.
AN EXAMPLE DEBUGGING SESSION
EDITING TEXT ...cvevvenvenienieenenne
TOOLBARS AND MENUBARS ...
CLASS PATH CONSIDERATIONS...
WORKING WITH PACKAGES .
WORKING WITH PROJECTS ...

6: JAVELIN STAMP PROGRAMMERS REFERENCE 99

JAVA DIFFERENCES.....
GETTING STARTED
VARIABLES, TYPES, AND CONSTANTS
Constants
Number Bases
Expressions
Special Operators..
Comments
Control Flow
Classes and Objects

Page ii * Javelin Stamp Manual v1.1 « www.javelinstamp.com

Table of Contents

Methods and Parameters ...
Where are the Pointers?
Arrays.......
Strings ..
Extending Classes
Basic Type Classes...
Numeric Conversions
Statics
Abstraction ..
Exceptions ...
Packages and CLASSPAT,
ONLINE RESOURCES
JAVELIN STAMP KEYWORD REFERENCE
abstract
boolean
breatk.....
byte....
case....
catch..

extends

final ...

package
private, protected, public ...
return....
short ..
static ..

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page iii

Table of Contents

instanceof ...
UNUSED KEYWORDS......
Unsupported Reserved Words:..

7: WORKING WITH OBJECTS

WHAT'S AN OBJECT?...
Encapsulation..
Polymorphism
Class Relationships
An Object Oriented Example..
Decoupling the Code
Virtual Peripherals....
A Timer Example.......
Object-Oriented Opportunity

8: OBJECT REFERENCE 173

THE JAVA.LANG PACKAGE
Boolean.....
Error..
Exception.....
IndexOutOfBoundsException
Math
NullPointerException

Page iv * Javelin Stamp Manual v1.1 « www.javelinstamp.com

Table of Contents

Random
THE STAMP.UTIL PACKAGE

LINKEDLISTITEM ...
9: JAVELIN STAMP HARDWARE REFERENCE 185

readPin.
readPort ...
removeVP.
setInput
shiftln

shiftOut.
writePin
writePort ..

EEPROM ...
MEMORY

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page v

Table of Contents

TERMINAL.

TIMER
10: TECHNICAL DETAILS 225
SUMMARY OF JAVA DIFFERENCESc.ceitiitiatiriiatieiieiieteteeeste st ssesteesesieesees e nsesse st ssesnesneene 225

Single Thread
No Garbage Collection ...
Subset of Primitive Data Types .
Subset of Java Libraries..
Strings are ASCII
No Interfaces
One Dimensional Arrays.....

UNDERSTANDING THE JAVELIN STAMP’S MEMORY MANAGEMENT ...

MEMORY AND VARIABLE TYPES ...couuiiiiiiiiiiiiiiierte ettt ettt ettt s sine st neeseeesaeesanen

INDEX 233

Page vi * Javelin Stamp Manual v1.1 « www.javelinstamp.com

Preface

Manual Organization

This manual was written under the assumption that the reader’s level of experience could be
anywhere between beginner and advanced embedded Java™ aficionado. We recommend that
you start from the beginning and work your way through this manual sequentially, especially
if you are new to both circuits and Java. Make sure to try all the examples and understand
how they work before moving on to the next. For those of you who do not fall at either end of
the spectrum, below is a condensed table of contents with comments regarding the intended
audience and uses of each chapter.

Preface
General information - discusses Javelin Stamp’s features, this manual’s format and
conventions, resources and acknowledgements.

1: Introduction
General information - about the Javelin, its uses, equipment it can be used with,
specifications, software, etc.

2: Javelin Quick Start
Recommended for all — includes step by step instructions for software installation,
hardware setup, trouble shooting, a couple of example programs, an example circuit,
and a software tour.

3: Beginners Guide to Embedded Java™ Programming
Recommended for Java newcomers and BASIC Stamp users - if you’ve never
programmed in Java before, read this, and try the examples!

4: Application Examples - Circuits and Programs
Recommended for embedded newcomers and BASIC Stamp users — provides good
examples for BASIC Stamp users to make the transition to Java based hardware
design, and helps those new to circuit based programming projects get their feet wet.

5: Using the Javelin Stamp IDE

Recommended for all — the Javelin Stamp IDE is a powerful tool with many useful
features.

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page vii

Preface

6: Javelin Stamp Programmers Reference

If you are a Java programmer, pay close attention to the differences between Java for
the Javelin and Java on your PC. For beginners, this is a good way to learn
programming in Java.

7: Working with Objects

Recommended if you are still learning Java — by this point, if you were new to Java
at the beginning of this manual, you are now well into the learning curve.

8: Object Reference

Recommended for all — whether you are an experienced Java programmer or you just
finished Chapter 7, this chapter explains the Java library classes available for use
with the Javelin.

9: Javelin Stamp Hardware Reference

Recommended for all — explains all the hardware related library classes and methods.
If it has to do with a VP, a peripheral or an external circuit, the information is here.

[10: Technical Details

Appendix material.

Java Programmers — READ THIS

The Javelin Stamp is a small yet powerful controller that makes use of a subset of Java 1.2.
The Javelin Stamp has firmware enhancements (called Virtual Peripherals or VPs) that
emulate, or virtualize, hardware devices such as UARTS, timers, A/D converters, D/A
converters, and more. These VP’s have been painstakingly optimized, and they take the form
of native methods that make it easy to interface with just about any circuit or peripheral
device. Many of these firmware features are similar to those that lead the BASIC Stamp’s
popularity, and others have long been on BASIC Stamp users’ wish lists.

The flip side of the Virtual Peripheral firmware features is that they have been incorporated
into the Javelin Stamp at the expense of Java purity. You will find the experience of
developing applications with the Javelin Stamp uniquiely different from developing
applications on a PC. To get to the rewards of a rapid prototype of your product design or
project with minimal stumbling, we recommend above all that you try the many programming
and circuit examples in this text. Before getting started on the examples, take a few minutes

Page viii » Javelin Stamp Manual v1.1 « www.javelinstamp.com

Comment [1]: 10: Internet Programming Advanced
example — connecting to UDP servers. This section needs
to be added back.

Preface

to review the reading list below. It will acquaint you with the scope of Javelin Stamp projects
and help you avoid some of the programming pitfalls you might otherwise encounter.

Suggested reading for Java Programmers:

Section Page
The Javelin Stamp and Its Features 1
Programming Language - Java'™ for the Javelin Stamp 2
Summary of Java Differences 225
Javelin Stamp Integrated Development Environment 2

3

Virtual Peripherals

Background VPs 3
Foreground VPs 3
How the Javelin Stamp Works 4

BASIC Stamp Enthusiasts — READ THIS

As with the Java Programmers who were addressed in the previous section, programming the
Javalin Stamp is also likely to be very different from what you, the BASIC Stamp Enthusiast,
are expecting. This manual has LOTS of example programs and circuits to help you
transition from PBASIC to the Java subset used to program the Javelin Stamp. Especially if
you are unfamiliar with Java, we strongly recommend that you work through the examples in
this text sequentially. The majority of this manual’s organization was established with you in
mind, so, if you have not already done so, please take a look at the Manual Orginazation
section at the beginning of this preface. If you are like the rest of us at Parallax, you probably
can’t wait to get started, so have fun with Chapter 2: Javelin Quick Start.

Manual Conventions

Below is a list of typographical conventions used in this manual:

Monospaced is used for:
» Words that are part of the language syntax when they are part of a sentence.
« Fragments of programs. The code snippet below is an excerpt from a
program, but it cannot be run on its own. It has to appear in either a
complete program or a complete class file, both of which are discussed
next:

Javelin Stamp Manual v1.1 www.javelinstamp.com ¢ Page ix

Preface

System.out.println(“Not a complete
program.”);

A gray box is used for:

« Complete programs that can be entered into the Javelin Stamp IDE and

executed on a Javelin Stamp, for example:

import examples.manual_vl_0.*;
public class CompleteProgram{
public static void main() {

CompleteClassFile example = new CompleteClassFile();
System.out.println("Now, it's in a complete

program.");
example.displaySameMessageAgain();
}
}

« Complete class files that can be instantiated by other programs. Here is

an example:

package examples.manual vl 0;
public class CompleteClassFile {
public static void displaySameMessageAgain()

System.out.println("Now, it's in a complete class

file");
}
}

Resources and Technical Support

The inside cover of this manual has three sections pertaining to resources:

+ Internet Access
e Internet Javelin Stamp Discussion List
« Contacting Parallax

Follow the Tech Support link at www.javelinstamp.com
for the latest in tech support contact info, discussion
group links, manual errata, answers to frequently asked
questions, and more!

Page x ¢ Javelin Stamp Manual v1.1 « www.javelinstamp.com

Preface

Free Downloads from www.javelinstamp.com

You can always get the latest revisions and updates of the following from
www.javelinstamp.com:

e Javelin Stamp Manual
« Javelin Stamp IDE

« Application Notes

« Library Files

Acknowledgements

Chris Waters and Celsius Research provided the Javelin Stamp firmware and reference
design. This manual was developed using information and research provided by Al Williams
Consulting. Each and every employee at Parallax has made some contribution to the Javelin
Stamp project, so as always, thanks to the entire Parallax staff.

Javelin Stamp Manual v1.1 www.javelinstamp.com ¢ Page xi

1: Introduction

The Javelin Stamp and Its Features

The Javelin Stamp is a single board computer that’s designed to

function as an easy-to-use programmable brain for electronic products

and projects. As shown in Figure 1.1, it’s about the size and shape of a Aristides 4/28/05 11:35 AM
commemorative postage stamp. It is programmed using software on a Formatted Table

PC and a subset of Sun Microsystems Java® programming language.
After the program is downloaded to the Javelin, it can run the program*

without any further help from the PC. The Javelin can be programmed
and re-programmed up to one million times.

We hope you enjoy working with your new Javelin Stamp as much as
we have while preparing this manual. The Javelin Stamp is somewhat
of a departure from Parallax’s BASIC Stamps| Most notably, the
Javelin is programmed using a subset of the Java programming
language. Some of the other features that set the Javelin apart from Comment [2]: The Javelin Stamp takes Parallax’s
BASIC Stamps are: BASIC stamps into a new direction.

The Javelin Stamp thrusts Parallax’s BASIC stamps
into a new direction.

Parallax’s BASIC Stamps take a new direction with

Figure 1.1 Javelin
(top view)

« The instruction codes for the Javelin are fetched and executed from a

parallel SRAM instead of a serial EEPROM. the Javelin.

» The Javelin has 32k of RAM/program memory with a flat architecture. The Javelin Stamp is an exciting new
No more program banks, and no more tight squeezes with variable poicroconionliery
space.

e The Javelin has built in Virtual Peripherals (VPs) that take care of
serial communication, pulse width modulation and tracking time in the
background.

e Serial communication is buffered as a background process. When
writing programs, all you have to do is periodically check the buffer.

e The Javelin Stamp Integrated Development Environment (Javelin
Stamp IDE) software is a significant departure from a simple Editor
and messages window combination. When used with the Javelin
connected to a PC by a serial cable, this software can be used as a
highly integrated in-circuit debugging system that allows you to run
code, set breakpoints and view variable values, memory usage, I/O pin
states and more. There is also no need for emulators; the Javelin can be
placed directly into the circuit and debugged there.

+ Delta-sigma A/D conversion.

* D/A conversion is accomplished in the background as a continuous
pulse train delivered by an I/O pin. The pulse width modulation VP can

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 1

1: Introduction

also be used for generating pulse trains, frequencies, and D/A
conversions in the background while your foreground code is free to
perform other tasks

Those of you who appreciate the simplicity and ease of use of the BASIC Stamps need not
worry; the Javelin Stamp has many features that BASIC Stamp users have come to depend on
in their projects and designs. Here is a list of features built into the Javelin with BASIC
Stamp users in mind:

« Synchronous serial communication (shiftIn/shiftOut)

» The ability to both send and measure discrete pulses (pulseln/pulseOut)
« Frequency counting (count)

« Simple and intuitive methods for reading from and writing to I/O pins

* Measurement of RC charge and discharge times (rcTime)

BASIC Stamps have been used for everything from lessons in basic computer programming
and electronics, all the way up to aerospace subsystem designs. We expect to see the Javelin
used in a similar manner. However, by making use of the Javelin’s new features, it can be
used to tackle some more demanding designs that used to require larger processors.

Programming Language - Java™ for the Javelin Stamp

The Javelin’s programming language supports many of the Java languages most useful
features:

+ Object Orientation - Inheritance, method overloading, polymorphism and static
initializers.

+ Exceptions - Try-catch-finally blocks and the ability to catch exceptions with a
super-class.

+ Strings — Programmed using many familiar Java commands|

e Custom Library Support - For many popular peripherals such as LCDs, temperature,
AD, communication ICs, and common Internet protocols such as ARP, UDP, and

PPP.
There are some differences between writing applications for your PC using
Java Java 1.2 and the subset of Java used by the Javelin. Experienced Java
Differences programmers should consult the Summary of Java Differences section in

Chapter 10.

Javelin Stamp Integrated Development Environment

Page 2« Javelin Stamp Manual v1.1 « www.javelinstamp.com

Comment [3]: Check with Jim on this

1: Introduction

Javelin Stamp Integrated Development Environment (Javelin Stamp IDE) offers the features
that you would commonly expect from a source-level debugger:

+ Multiple breakpoints

« Stack backtrace

« Inspection of all variables and objects, both static and dynamically allocated

« Single-step, run, stop, reset

« Built-in bi-directional serial message terminal for System.out.println() and
Terminal.getChar () type debugging

The Javelin Stamp IDE is introduced in Chapter 2, and then discussed in more detail in
Chapter 5. This IDE makes real-time debugging so easy that a PC emulator is completely
unnecessary. It is just as easy to develop and debug on the Javelin module itself.

Virtual Peripherals

The Javelin Stamp firmware supports a variety of Virtual Peripherals (VPs). The VPs are
separated into two separate categories, foreground and background. The background
processes allow you to create UARTS, pulse trains, and a timer. Once created, background
VP objects run independently from the program. Since time-sensitive tasks are taken care of
by the VPs in the background, designs that used to be difficult become easy. For example,
serial communication does not stop just because the Javelin is measuring the duration of an
incoming pulse. The programmer simply needs to periodically check the serial buffer in the
foreground code. Below is a list of background and foreground VPs.

Background VPs
« UART (Full duplex, HW flow control, buffered)

- PWM
* 32-bit Timer
« 1-bit DAC

* Delta/Sigma ADC

Foreground VPs
¢ Pulse count
¢ Pulse width measurement
« Pulse generation
¢« RC Timer
¢ SPI master

Javelin Stamp Manual v1.1 www.javelinstamp.com ¢ Page 3

1: Introduction

These Virtual Peripherals are built into the Javelin
Stamp’s firmware. Although you can write library classes
that make use of these VPs, the VPs themselves cannot be
modified or rewritten.

How the Javelin Stamp Works

The Javelin Stamp’s hardware architecture is shown in Figure 1.2. Programming and
debugging is done via communication with the serial port. The COM circuit takes care of the
voltage conversions necessary for a TTL device to talk with an RS232 port. The Java
interpreter processes all serial port/COM circuit information. Whether it’s byte codes,
debugging data or serial messages, the interpreter processes the data and decides what to do
with it.

When a program is downloaded, the interpreter buffers the program bytecodes and writes
them to the EEPROM. Upon reset (or a power interruption), all the Javelin Stamp’s I/O pins
are set to input. The interpreter copies the bytecodes to the SRAM, then starts fetching
bytecodes from the SRAM and executing them. The bytecode instructions can be executed
very rapidly because all data is transmitted along parallel data busses instead of synchronous
serial lines. A typical fetch and execute cycle involves a couple of read/write cycles. During
a read/write cycle, the interpreter loads some of the 15 bit address information into an address
latch and writes the other portion directly to the SRAM. When the SRAM address is set, then
the data is read or written by the interpreter as needed.

The Javelin’s internal voltage regulation is done using a switching regulator. The switching
regulator runs cooler and is significantly more efficient than a linear regulator. It accepts
voltages between 6 and 24 V, and makes 5 V available for the Javelin Stamp with a total
current budget of 150 mA. The passive components including the input and output
capacitors, switching diode and inductor are on the top side, and the switching IC is on the
bottom side of the board next to the EEPROM. The switching IC monitors the output voltage
and adjusts the switching duty cycle to the passive components to maintain a constant 5 V
output.

Page 4 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

1: Introduction

Power / Ground / Feedback

Serial
Port
Serial Data I
v ‘
. Com
Switching Regulator| 44 E s Vin
Passive Elements Circuit
Switching
32 KB
0 Address| r Address Eeprom | |Regulator
o Latch IC |
g Address 1
< Java |l > 32 KB Vss
Interpreter Data SRAM
— < %
top bottom

Figure 1.2 Javelin Block Diagram

Javelin Stamp Hardware

Table 1.1 shows the Javelin Stamp’s specifications. Note that the onboard voltage regulator
can accept between 6 and 24 Vpc and output up to 150 mA of current. Since the Javelin
consumes approximately 60 mA, you have 90 mA available for other uses. Keep in mind that
if you are utilizing the full 60 mA of total I/O pin source/sink that only 30 mA is left over for
powering peripheral devices using the Javelin’s Vdd pin. On the other hand, if all the I/O pins
are being used for input, 90 mA can be used drawn from the Javelin’s voltage regulator output
(Vdd) for peripherals. If in doubt, use an external 5 V regulator for your peripherals.

Table 1.1: Javelin Hardware Specifications

Attribute Value
Module Footprint 24-pin DIP module
Package Measurements ” » ,,
(LXWxH) 1.2"x0.6"x0.4” (3.0x1.5x1.0 cm)
Operating Environment 0°-70°C (32°-158°F)
Microcontroller Ubicom SX48AC

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 5

1: Introduction

RAM 32 kilobytes
EEPROM 32 kilobytes
Number of I/0O pins 16
6 — 24 VDC (unregulated)
Voltage Supply -or-

5 VDC (regulated)

Voltage regulator current output 0 <oyt <180 mA

Current Consumption 60 mA / 13 mA nap
Sink/Source Current per 1/O 30 mA /30 mA

Sink/Source Current per module 60 mA / 60 mA per 8 I/O pins
Sink/Source Current per Bank

Pins (0—7) and (8 - 15) 80 mA /30 mA

Windows Editor/Debugger Javelin Stamp IDE

Equipment and System Requirements

To run the IDE and program the Javelin, you will need an IBM PC or compatible computer
with the following:

* Windows 95, 98, ME, 2000, or XP.

* A CDROM or Internet connection.

* Anavailable 9-pin serial port
Or — A USB port with an approved USB to serial adaptor. See
www.javelinstamp.com for information on products that have been tested and
approved.
Or — A 25-pin serial port with a 25 to 9-pin adaptor.

The Javelin Stamp Starter Kit is discussed in detail in the following section: Useful
Hardware. 1f you do not have a Javelin Stamp Starter kit, you will need to acquire at least the
following.

* Recommended DC Power Supply: 7.5 VDC, 1000 mA 2.1 mm, center-positive
Acceptable battery/DC Power Supply values range between 6 and 24 VDC.
Minimum output current rating depends on voltage. A 6 V supply can have an
output current rating as low as 100 mA while higher voltage supplies may need
higher output current ratings.

* Serial programming cable
Be sure to use a straight-through serial cable or adaptor. Do not try to use a null
modem cable or adaptor for downloading programs to the Javelin.

* Carrier board or serial cable and power supply connections

Page 6 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

1: Introduction

Parallax makes a variety of carrier boards for BASIC Stamps. The Javelin
Stamp can be powered and programmed using any of these carrier boards. You
can also make your own connections for supply voltage and serial cables. See
the Hardware Setup section in Chapter 2.

Useful Hardware

The Javelin Stamp Starter kit is a great way to get started, especially if this is your first
adventure into Javelin based projects. Projects featured in Chapters 2, 4, and 9 make use of
the carrier board and parts in this starter kit. The Javelin Stamp Demo Board is the carrier
board included in the kit, and its features are shown in Error! Reference source not found.
and listed below.

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 7

1: Introduction

Voltage
Com port Regulator

Power jack AppMod Servo ports
Header

Power header

C
EE Port ¥V =+ vdd Vm Vin _ Vss /
xi [asssmsnsnnns]
Vss| Vss
P

Vm socket is for
— servo port power.

©°3 % PARALAXE™ ps P7 5112 Connect to either
1 P8 P9 i
A = = (] vdd or Vin.
m P12l R]P13 P9
@) P14 P15 P8
ur et D0 o7 +—— Breadboard
P6
% S com ps
Pot P4
% <4[FJo« P3
«3 g«. P2
IS » P1
»?Eé‘ Po

our 4 ©202

X
Javelin Stamp
JDE R
@ Port Www.javelinstamp.com r@ Res:’? Demo Board @

T COM port I/O Javelin
JVM port 1/0 header
Javelin Stamp
Socket Power indicator

and reset button
Figure 1.3 Javelin Stamp Demo Board Features

The Javelin Stamp Demo board (Error! Reference source not found.) has the following
features:

* Socket for the Javelin Stamp (Labeled U1).

« JIDE port for debugging, messages, and downloading programs from the PC into the
Javelin Stamp.

» A power jack that can accept input voltage ranging from 6 to 24 Vpc.

Page 8« Javelin Stamp Manual v1.1 « www.javelinstamp.com

1: Introduction

A COM port that can be used to connect the Javelin Stamp to other computers.
Alternately, you can attach a null modem adaptor to this COM port and then connect
the Javelin to peripherals such as serial GPS units, mice, etc.

Linear voltage regulator for prototype circuits.

Small breadboard area for building, testing and prototyping circuits.

A power header (supplied by the liner voltage regulator). This header can be used to
supply circuits with power.

A Javelin I/O header to connect your Javelin Stamp I/O pins to your circuit.

COM Port I/O header. You can use jumper wires to connect Javelin Stamp I/O pins
to the COM port I/O header. Then you can write code to communicate with another
serial device such as a computer or peripheral that’s connected to the COM port.
LED power indicator (labeled PWR).

Reset pushbutton. Press and release to restart the program from its beginning.|

A servo port for connecting and controlling servo motors.

As mentioned earlier, the circuit examples in this manual feature parts you can find in the
Javelin Stamp Starter Kit. The parts are listed in Table 1.2. Table 1.3 lists parts that are also
recommended but not included in the kit.

Table 1.2: Javelin Stamp Starter Kit

Quantity | Part Number | Part Description

1 550-00019 Javelin Stamp Demo Board Rev A
1 JS1-IC Javelin Stamp Module Rev B|

1 27957 Javelin Stamp Manual

1 800-00003 Serial Cable

1 800-00002 DB9 Null Modem Adapter Male to Male
1 604-00002 DS1620 Digital Thermometer

1 350-00009 Photoresistor

1 900-00001 Piezo Speaker

1 602-00009 74HC595 Output Shift Register

1 602-00010 74HC165 Input Shift Regster

3 400-00002 Tact Switch (Pushbutton)

2 350-00006 LED - Red - T1 3/4

8 350-00001 LED - Green - T 3/4

1 150-02210 RED -220-% W -5%

8 150-04710 RES -470- YW - 5%

1 150-01020 RES-1k-%W-5%

3 150-01030 RES-10k-%W-5%

2 150-02230 RES-22k-%W-5%

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 9

Comment [4]: Make sure to add these examples.

sdill

Comment [5]: Verify Current Rev

Comment [6]: Verify Current Rev

1: Introduction

2 200-01040 CAP - 0.1 uF - MonRad

201-01050 CAP -1 uF - Elect.

201-01061 CAP - 10 uF - 16V - Elect.

800-00016 3" Jumper Wires (1 Bag of 10)

alalaln

27000 Parallax CD

Table 1.3: Recommended Parts not Included
in the Javelin Stamp Starter Kit

Quantity | Part Number | Part Description

1 750-00009 7.5 Vpc DC Power Supply

1 900-00005 Parallax Standard Servo

Page 10 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

This chapter will guide you through getting started quickly with the Javelin Stamp. Later
chapters will show you more details about each feature you work with here. The easiest way
to get started is to use the Javelin Stamp Demo Board. However, if you want, you can use a
carrier board of your own design using the schematics in this chapter. This chapter’s topics

include:

Connecting the Javelin Stamp Hardware
Installing the Javelin Stamp IDE

“Hello World” program for the Javelin Stamp
Online documentation

An IDE Debugger example

A “Hello Circuit” program for the Javelin Stamp
Trouble-shooting tips

Hardware Setup

If you are using the Javelin Stamp Starter Kit or the Javelin Stamp Demo Board, getting the
hardware set up takes just a few steps:

v

v

Plug your serial cable into an available COM port or COM port adaptor on your PC
or laptop.

Plug the 7.5 V DC Power Supply into a wall socket. DO NOT PLUG THE OTHER
END INTO THE CARRIER BOARD YET.

Next, use Figure 2.1 as your guide to the following:

v

Plug your Javelin Stamp into the Javelin Stamp Demo Board. Double check the
figure to make sure you did not plug it in upside down. Once the Javelin’s pins are
all lined up with the holes in the socket, press down firmly with your thumb to make
sure the Javelin is properly seated in its socket.

Plug the serial cable into the DB9 connector labeled JIDE port on your Javelin
Stamp Demo Board.

Plug the 7.5 V DC Power Supply’s barrel jack into the 6-24 VDC plug on the Javelin
Stamp Demo Board.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 11

2: Javelin Quick Start

AC adaptor plugged
into wall outlet not
shown

~~

AC adaptor
barrel jack

Figure 2.1
Connecting
Power and Serial
Cable to Javelin
Stamp Demo —

Board

9-pin female serial
cable plug (not shown)

plugs into PC’s 9-pin male serial
serial port cable plug

rava Javelin Stamp 2
Roset Demo Board

NOTE: Serial cable is a “straight-through”
cable. Do not use a null-modem cable!

When you are done with this, you can skip to the Installing the Javelin
Stamp IDE section. The remaining material in this section details the
electrical connections required for powering the Javelin and connecting the
serial cable to the communications pins without a carrier board.

Done?

The Javelin Stamp’s pin map and mechanical drawing is shown in Figure 2.2. Throughout
this text, the Javelin Stamp’s pin labels will be referred to as shown on this diagram. Keep in
mind that pin labels correspond to numbered pins on the module. For example, the pins
labeled Vin, Vss, and Vdd are used for connecting power to the Javelin. You can use this pin
map to discover that Vin, Vss, and Vdd are pins 24, 23, and 21 respectively. Likewise, the
general-purpose input/output pins (I/O pins) PO through P15 correspond to pin numbers 5
through 20 in the figure. The active-low reset pin, RES, is pin 22, and the COM pins, SOUT,
SIN, and ATN are pins 1 through 3 respectively.

Page 12« Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

sour[d’ VIN A [Javelin xd
—~ SN H . Evss o~ z] gum : “E
(S B REs £ B I
E ey HM 15000 E] I
Figure 2.2 - S 6 i N 5] q
: o P1[e P14 T E] &
Javelin Stamp s S b =
Mechanical = e g ez 3] 5l
i P4[s] H i 3] n T] 8]
Dravylngs and o=] = [B g
Pin Map Y refm pe T 2] 5|
ﬁwﬂ. § E:g o [iE] v @ Rev o
>‘.62" (16 mm)L
Top Bottom

Figure 2.3 shows the recommended power supply circuit along with the recommended serial
port wiring and reset switch. The power supply connections involve Vin, Vss, and Vdd (pins
24, 23, and 21). Vin should be connected to the positive terminal of the DC power source.
Remember, this positive voltage must be between 6 and 24 Vpc. Vss (pin 23) should be
connected to the DC power source ground or the negative battery terminal. Under this
connection scheme, Vdd is a regulated 5 Vpc output that can supply anywhere between 30
and 90 mA depending on the current demands placed on the Javelin’s I/O pins.

The recommended reset circuit shown in Figure 2.3 is a normally open pushbutton switch
that, when pressed, connects RES (pin 22) to ground. When RES is driven low by pressing
the pushbutton, the Javelin goes into a reset state. When the button is released, the Javelin
starts whatever program it was running from the beginning. When the pushbutton is not
pressed, the RES input is floating. There is an internal pull-up resistor onboard the Javelin
that keeps RES at 5 V when the input is floating.

Sout, Sin, ATN, and Vss (pin 5 this time) of the Javelin are used for programming and
debugging and are connected to the computer’s serial port as shown Figure 2.3. Note that
there is a loopback connection between pins 6 and 7 on the computer’s serial port. This
loopback is used to help the Javelin Stamp IDE auto detect the COM port that the Javelin
Stamp is connected to. If you do not use this loopback connection, you will have to tell the
software which serial port the Javelin is connected to. For information on how to do this, see
Chapter 5: Using the Javelin Stamp IDE.

IMPORTANT

Do not try to use a null modem adaptor or null modem
cable for connecting the PC to the programming port.

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 13

2: Javelin Quick Start

You will not be able to program your Javelin Stamp if you

are not using a straight through serial cable.

When the

cable is labeled serial cable, or serial extension cable, it
is straight through. If it is labeled null modem, it will not
work for programming the Javelin.

Javelin Stamp Rreva

-

Vin

Vin should be a
DC input between
6 and 18 VDC.

Circuit A

Connect DSR and RTS for Recomended
automatic port detection.
. f'souT VIN O
PC Serial Port b s vss g
1 ATN RES 4
.‘ b vss VDD o}
6 0 PO P15
ol Rx Shei P14
hd b P2 P13
o] ™ 8hp3 P12
hd OB pa P11 d
24| DR 11‘17 b Ps P10 f
- b P6 P9 O
25| eno 25 p7 P8
[
.)) . JS-IC
Note: The serial port is a 9-pin, or 25-pin, male Module

connector, usually on the back of the computer.
Use a 25-pin to 9-pin adapter when trying to
interface to a 9-pin cable.

L 57
19 Optional
18 PB Switch
17

1
15
4 Vdd
see note 2

f

Vss

The Javelin’s onboard
switching regulator can be
used to supply low power
circuits with regulated 5VDC.

Figure 2.3 Javelin Stamp Com Port Connection and Recommended Power Connections

Figure 2.4 shows an alternate power supply scheme that can be used but is not recommended
because of a 15 to 20 mA current draw penalty.

Page 14 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

Leave Vin unconnected

Circuit B
Optional 5 VDC from
Vdd «—— external voltage
regulator.
THsour VNGO nc
2B s vss
3SHAN REs g2 —
4hvss voD O
b ro P15 {79
Spri P14 LS —
spr2 pafl® L3
s p12g Optional
b pg p110]16 p
15 PB Switch
0hps P10 d}?
bes Porfid =
be7 P8 [Vss
Js-IC
Module

Figure 2.4 Alternate power supply connection
diagram (not recommended)

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 15

2: Javelin Quick Start

Installing the Javelin Stamp IDE

The “IDE” in Javelin Stamp IDE, stands for Integrated Development Environment. The
Javelin Stamp IDE is the software you will use to write, compile and download programs to
the Javelin. The Javelin Stamp IDE also has a terminal window for sending messages to and
receiving messages from the Javelin and a very powerful in-circuit debugging tool. These
features are introduced here and examined more closely in Chapter 5: Using the Javelin
Stamp IDE. For now we will focus on installing the software and taking it and the Javelin for
a test drive.

Installation is simple, especially if you go with the default install. Selecting the default install
options and installation path is especially useful if this is your first test drive of the Javelin
Stamp. The two easiest ways to run the Javelin Stamp IDE setup are:

« Run it from a Parallax CD dated March 2002 or later
« Download it from www.javelinstamp.com and run it from whatever folder you saved

it to.

Each method is discussed below.

Parallax CD Install: Run the install program and follow the
recommended defaults. The filename will be similar to this:

Javelin Stamp IDE Setup v1.2.0.exe
It’s located on the Parallax CD (March 2002 or newer) in this directory:

INSTALLATION CD:\Software\Javelin Stamps\

SHORTCUTS

Web Download and Install: You can download the latest version of
Javelin Stamp IDE Setup from the Downloads | Software page of
www.javelinstamp.com. Save it to any folder and double click it to run.

If your install was successful, skip to the section entitled: Test Program

When you insert the Parallax CD into your CD drive, a browser similar to the one shown in
Figure 2.5 will appear. If it does not appear, run the welcome application from the CD’s root
directory. Next, follow these steps:

Click Software

Click the + next to the Javelin Stamps folder
Click the floppy diskette labeled Javelin Stamp IDE Setup

Page 16 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

Click the Install button

Figure 2.5
Parallax CD
Browser

¥ Welcome to the Parallax, Inc. Product CD-ROM - August 2001

rdrdildX;inc.

wourceiboue

S:'.hua re

Dosmmenaion i

[Run or install Parallax product software.

Figure 2.6 on the next page shows the windows you will see during the setup process, and
each screen is summarized below.

(@)
(b)

(©)

(@
(©

Setup wizard introduction for the Javelin Stamp IDE software. Click Next.
Information screen contains version history, notes, and other helpful
information. Review and then click Next.

Destination directory. Especially if this is your first time using the Javelin, use
the default directory. If you decide to install to a directory other than the default
directory, make sure to consult the Class Path Considerations section in Chapter
5: Using the Javelin Stamp IDE. Click Next when ready.

Review your install path, and click Next to install or Back to make changes.
Confirm file association. Click next if you are new to Java.

Uncheck the checkbox next to “Associate Javelin IDE

Java with java extension” if you do not want the Javelin

Programmers Stamp IDE to replace file associations that your
existing Java development suite has established.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 17

2: Javelin Quick Start

(f) As the Javelin Stamp IDE is installed, there is a blue bar that will show the
progress and then automatically move to the next window after it reaches 100%.
(g) Setup is complete and successful message (not shown). Click the Finish button.

2 Setup - Javelin Stamp IDE s

‘Welcome to the Javelin Stamp IDE
Setup Wizard

This wil instal Javelin Stamp IDE 1.10.0.0 on your computer,
Itis stongly recommended that you close ol other appications
yau have tunring before conlining. This vl help pievert any
conficts dusing the instalson process

Click Next to confinue, of Cancel to et Setup.

Cancel

(a) Introducing the setup wizard

2 Sctup - Javolin Stamp IDE AR

Select Destination Directory
Where shovid Javelin Stamp IDE be installd?

Select the folder where you would ke Javelin Stam IDE to be installed, then cick
Next

3
4 Progiam Files

1 Javeln Stamp IDE
(21 Stamp Edtor

EE B

The program requires at least 4.4 MB of disk space.

/3 Setup - Javelin Stamp IDE

‘When you are ready to continue with Setup, cick Next

Javelin Stamp IDE Instaler A

This installer Any s
(created wil ot be affected.

1.100- 272302

[Fived missing areen progiam counter fine whils debugging
| Added entiy... dialog box to help with version management and serial
|debugaing. =

Bk Conel

(b) IDE version information
43 Setup - Javelin Stamp IDE =

Ready to Install
Setup i now ready to begin insaling Javelin Stamp IDE on your computer.

<Back Cancel

Ciick click Back
change any settings.

[Destination drectory: =]
C:\Program Fes\Paralla InchJaveiin Stamp IDE

L o

(c) Destination directory

(d) Confirm destination directory

Page 18 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

Select Additional Tasks ~
‘Which additional tasks should be performed? (.,S

Stamp IDE, then click Nex.
Dther Tasks

42 Setup - Javelin Stamp IDE s B

Installing
Please wait while Setup installs Javelin Stamp IDE on your computer.

Extiacting fles.
&

T

<Back Cancel

(e) Confirm file association

(f) Watch the pretty blue bar get longer

Figure 2.6 Javelin Stamp Setup screens

Running the Javelin Stamp IDE and Loading a Test Program

The Javelin uses a language similar to Java but with special optimizations and features
designed for embedded systems. The Javelin Stamp IDE will compile and link your code.
This software downloads the compiled program to the Javelin. You can test your program,
using the Javelin Stamp IDE to set breakpoints and examine variables. You can also make
changes and go back to re-test your program until it does what you want it to do|

Once programmed, the Javelin remembers what it is
supposed to do, so after you are done debugging your
program, the Javelin Stamp will not need to remain
connected to the PC — the Javelin Stamp will perform the
last program you loaded every time it powers up. You
can reprogram the Javelin Stamp up tol-million times.

The first example we’ll try is a simple “hello world” program (Program Listing 2.1 below). It
will cause the Javelin to send a message back through the programming cable to the PC. The
Javelin Stamp IDE’s Messages window will display the message when it is received.

Program Listing 2.1 - Hello World!

public class HelloWorld {
public static void main() {
System.out.println("Hello World!");

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page 19

Comment [7]: ANDY: This is redundant and
kinda choppy. Consider condesing and rewording.

2: Javelin Quick Start
}

}

To run the Javelin Stamp IDE:

Click the Windows Start Button

Select Programs folder

Select Parallax, Inc folder

Select the Javelin Stamp IDE folder
Select and click Javelin Stamp IDE icon

P S
(2] Faw 3
Figure 2.7 =5 Documents >
Running the i Settings 3
Javelin Stamp &) Eind »
IDE from the & Hep
Windows Start 1 Bun.
menu. & Logon
Shut Digwn..

The Javelin Stamp IDE will look similar to the window shown in Figure 2.8. To get to the
point where you are ready to run the program, shown in the figure, follow these steps:

Enter the program exactly as shown.
Click the Save button.
Save the file as HelloWorld. java in your projects directory. The path for your
projects directory is:
C:\Program Files\Parallax Inc\Javelin Stamp
IDE\Projects\

IMPORTANT: Your filename must always match the class name shown in
the program, that’s why this file must be saved as HelloWorld. java.
(Java is case-sensitive therefore will distinguish the difference between
lowercase and uppercase letters. Keep an eye out for this when typing in
filenames or entering programs.) This name must match the class name, as
well as the case of the letters, given in the line in the program that reads

public class HelloWorld{

Page 20 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

Make sure your Javelin’s power supply and serial cables are connected.

Click the Program button.
II Javelin Stamp IDE !E]m
| File Edt Project Debug Help
O & B @ | & B - & ’ R E ¥ 4 | @
New Open.. Save Savedll | Cut Copy Paste Undo | Options.. | Compile Program Debug Resume | Help

Helloworld java |

ublic class HelloWorld{
public static void mwain(){
System.out.println{"Hello World!"™);
}

v
| | »

Source [Documentation| [1.2 [Modiied |insett Y

Figure 2.8 The Javelin Stamp IDE.

If the program was entered correctly, a small Progress window will appear in front of the
Javelin Stamp IDE and display the following messages along with a graph of it’s progress:

+ Linking Program
« Resetting Javelin
+ Downloading Program
« Resetting Javelin

Next, the Messages from Javelin window shown in Figure 2.9 will appear. You can use this
terminal window to view messages from the Javelin in the upper windowpane or send

messages to the Javelin in the lower “transmit terminal”.

Trouble
Shooting If you are having trouble getting the first program to run, turn to the section in this

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 21

2: Javelin Quick Start

Figure 2.9
Messages
from Javelin
Window

View messages from

windowpane.

chapter entitled: Did That Work? — Trouble Shooting.

For the Javelin to receive messages, you have to program
it to check for messages. The Javelin Stamp IDE installer
placed an example file called TerminalTest.java in your
projects directory. You can use this program to
experiment — with bi-directional Javelin ~ Stamp
communication using the Messages from Javelin window.

[[.-Message From Javelin o] B3

Javelin in the upper M s [
Clear Copy Close
Hello World?

Program the Javelin to
receive messages, then
send them to the Javelin
by clicking here (in the
transmit terminal) and
typing your message. «

Y

Debugging Environment

Clicking the Debug Button in the Javelin Stamp IDE will open the IDE Debugger. This will
be your best and most used tool for program and in-circuit debugging. By clicking the
Memory Usage tab, you can see the display shown in the Figure 2.10. By clicking the Run
button, you can make the Javelin send the PC another “Hello World” message via the serial

cable. The Messages from Javelin Window will re-appear.

If you lose the Debug window, simply select Show Debug
Window from the Debug menu. Similarly, if you lose the
message window select Show Message Window from the
Debug menu.

Page 22« Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

I Debugger [-[C1x]
: |
Run Siop | Steplnto StepOver | Breakpoint Reset | Show Message Window
CallStack | Stalic Varables Memay Usage |
Total Memory 2768 finbytes)
Used: 1833
Code 1705
Stings 144
Static Variables 18
19
Stack 5
Free 0875
Stack 6 Heap: 19
Proportions:
Figure 2.10
Class Code Size_|[Stings Size
IDE Debugger Heloword “ 2
favalang Thiowsble % 10
javalang System 0 0
javalang Sting 473 0
javaio PrintSteam g %
javalang Obiect 2 0
java lang legalrgumentE oeptior 71 0
javalang NulFointeiE sception 71 0
javalang IndeDu0fBoundsExce 71 0
javalang OuDfMemoErior 65 0
stamp.core. CPU 330 0
javalang RuntineE sception 65 0
javalang Enor E3 0
stamp core VituaPerpheral |22 0
javalang Exception E3 0

You can move around and resize your windows to a
configuration that best suits you. Then you can save this
configuration by selecting Save Desktop from the Project
men.

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 23

2: Javelin Quick Start

Here’s another program to try with the Debugger:

Program Listing 2.2 - Count Down

import stamp.core.x*;
public class CountDown {
static int myVar;

public static void main() {
System.out.println("Commencing Countdown:");
CPU.delay (10000);
for(myVar = 10; myVar >= 1; myVar--) {
CPU.delay(2000);
System.out.println(myVar);

}
System.out.println("Liftoff!");

}
i

Enter Program Listing 2.2 into the Javelin Stamp IDE.
Click the Debug button.

After the program loads, there should be two windows on your screen, the Javelin Stamp IDE
and the Debugger.

v" Click the Run button in the Debugger window to see what the program does. The
Messages from the Javelin window will reappear and display a countdown from 10
to 1.

v Click the Reset button in the Debugger window to reset the program to its starting
point.

v' Click the gray left-hand margin in the Javelin Stamp IDE next to the
CPU.delay (10000) command to set a breakpoint. The delay command will be
highlighted in red with a red dot in the gray bar as shown in Figure 2.11.

v Set a second breakpoint, next to the System.out.println command.

Page 24 » Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

], JIDE [Running] 8 [] B3 | L2 D ebugger
| Fle Edt Project Debug Help L] & °] [El
Fun | Sicp | Steplnto er | Breakpoint Reset | Show Message Window
S W@ B o BF g | -
New Open.. Save SaveAll | Cut Copy Paste Undo | Options.. | Compie Program Debug || Call Stack SlslmVanahlsxwamyUsm]
7 - &8 Static Fields
CounDownjava | & & CountDown
import stamp.core.t; B 3 int myVar = 8 040008
-4 javalang System
public class CountDown{ - & javao.PrintStream

G- stamp.core. CPU

G- @ javalang llegalérgumentE sception

(- & javalang NulPointerE sception

- @ javalang IndexOutDfBoundsE xception
G- javalang. DutMemorError

&% javalang RuntimeE xception

static int myVar:

public static void main() {
System.out.println("Commencing Countdown:");

3 CPU.delay (10000);

for (myVar = 10; myVar ; myVar--) {

CPU. delay(2000) ;

System.out.println{"Liftoff!");

Source [Documentation] |

ssage From Javelin (o] x]

¥ Enabled

By 15
Clear Copy Close
[Comnencing Countdown:
o

I3

o
8

e —
|

B |

Figure 2.11 IDE, Debugger, and Messages from Javelin Windows all in use.

v Click the Run button several times and note how the green “current command” bar
highlights the different breakpoints. You can also try the Step Over, Breakpoint
toggle and Reset buttons. If you want to see the library classes and methods used by
System.out.println (), you can click Step Over until you get to the command
before the second breakpoint. Then, click Step Into. To get back to
CountDown. java, just click Run, and it will take you back to the first breakpoint.

The Debugger doesn’t just let you look at your program. You can also use it to look inside
the Javelin as it executes code. For example:

Click the Static Variables tab in the Debugger.
Click the + next to Static Fields

Click the + next to CountDown

Note the value of MyVar

AN NE NN

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 25

2: Javelin Quick Start

While developing applications, keep in mind that this powerful tool is at your disposal. The
debugger is discussed in more detail in Chapter 5: Using the Javelin Stamp IDE.

Online Help

If you installed the Javelin Stamp IDE to the default directory, you can view the online help
by entering:

C:\Program Files\Parallax Inc\Javelin Stamp
IDE\lib\index.html

into your web browser. You can also use the Javelin Stamp IDE to view Online Help:
v Click the Help button in the Javelin Stamp IDE

A web browser will appear with three links, two of which are www.parallaxinc.com and
www javelinstamp.com. The other link is Online Help.

v" Click the Online Help link
You can view the documentation on the library packages at your disposal as shown in Figure
2.12. You can also toggle back and forth between your code and the online help by clicking

the Source and Documentation tabs in the lower left-hand corner of the Javelin Stamp IDE
window.

Page 26 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

5[]
ug Help
% & o F [F T 3 | @
ve Savesl | Cut Copy Paste Undo | Options.. | Compile Progiam Debug Resume | Help
[esBaO HAddlass] =
All Classes I Package Class Tree Deprecated Index Help T
- PREV NEXT ERAMES NO FRAMES
Packages
javaio Packages
. avalang —
Figure 2.12 avautl java.io
Online Help and giamp.core _'j javalang
Documentation i 5 _| |favaueil
All Classes j stamp.core
stamp.peripheral
ActionPause P o
ActionResult -
£ 4 tamp. heral.sensor
ActionWait stamp.utl _
ADC —
Boolean stamp.util.dialer
Button = stamp.util.os
- — _’I—I j
Source Documentation | | v

1/0 Example

The real strength to the Javelin Stamp is its comprehensive /O capabilities. With that in
mind, why not try a simple I/O program before you continue with the rest of this manual?
The schematic in Figure 2.13(a) shows a simple circuit with an LED and pushbutton. Since
this is a “quick start” guide, an example of the circuit built on the Javelin Stamp Demo Board
is also shown in Figure 2.13(b). For those of you unfamiliar with building circuits on a
solderless breadboard, there is an introduction at the beginning of Chapter 4: Application
Examples — Circuits and Programs.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 27

2: Javelin Quick Start

Vdd Vm Vin Vss

Vdd vdd
470 10k
Figure 2.13
Schematic and LED P1
Breadboard x PB Switch
Example for N W
Program Listing 2.3 I
PO =
Vss
(a) Circuit (b) Breadboard
Program Listing 2.3 - Flash LED with Pushbutton
import stamp.core.*;
public class ButtonLED {
static boolean PO = true;
public static void main() {
while(true) {
if (CPU.readPin(CPU.pins[1l]) == false) { // If button
pressed
PO = !PO; // Negate PO
CPU.writePin(CPU.pins[0],P0); // LED [On]
CPU.delay(1000);
} // end if
else {
CPU.writePin(CPU.pins[0],true); // LED [Off]
} // end else
} // end while
} // end main
// end class
declaration

v’ Enter this program as shown and save it as ButtonLED. java.
v Click the Program Button.

Page 28 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

You’ll see the same downloading screen as before. When it completes the download, you can
press the pushbutton to cause the LED to flash on/off at 5 Hz. When the pushbutton is
released, the LED will not flash on/off.

Once the Javelin Stamp has been programmed, you can unplug it from your PC, turn the
power off, move the Javelin Stamp somewhere else, reconnect the power and it will start
running the program automatically. You only need the PC to program the Javelin Stamp.
Once programmed, it will operate all by itself.

Did That Work? — Trouble Shooting

If the example worked as expected, great! You’re ready to move on to the next section. If the
example did not work, this section reviews some of the most common stumbling blocks and
trouble shooting tips. Regardless of whether it’s a compiler error or a download error, the
error message will appear in a sub window in the IDE shown in Figure 2.14. Table 2.1 shows
a list of the common problems and their error messages. Each problem and its solutions are
discussed in this section.

Table 2.1: Problems and Error Messages

Problem Error Message
Compiler Errors [Error] HelloWorld.java...
Error [IDE — 0056] Possible Javelin on COM 1 did not
Javelin Not Responding respond.) ’
Error [IDE — 0054] Unable to find Javelin on any COM
port.
Javelin Not Detected E;ct)r [IDE — 0054] Unable to find Javelin on any COM

Compiler Errors

If you did not enter the program correctly (Java is case sensitive), the IDE might display an
error message below your program. In Figure 2.14, the word Class should have been typed
class in lowercase letters. You can double click the error message to get a hint from IDE as
to what the error is. Notice how the word “Class” is highlighted. This is because the Java
Error message that appeared below the program was double clicked.

Sometimes the majority of the code you typed will be highlighted when you click the

compiler error. Check to make sure you didn’t leave out one of the braces { }. Other times,
there is more than one mistake. You might find that the next time you click the Program

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page 29

2: Javelin Quick Start

button, a different compiler error is displayed. Keep on fixing the errors. After each one is
fixed, try clicking the Program button again. When all the errors are fixed, a “Compile
successful” message will appear briefly at the bottom of the Javelin Stamp IDE window.
Once the program syntax is correct, the Javelin will attempt to download the program.

Keep in mind that one bad line of Java code can create lots of errors, so always look at the
first error in the list. After fixing that first error, try to run the program again (by clicking the
Run button). It might run right away, or you may see more errors.

[- - [

| File Edit Project Debua Help

D & W ¥ |4 B o kT <
New Open.. Save Saves| | Cut Copy Paste Undo | Options.. | Compile Program Debug Resume | Help

Helloworld.java I

Figure 2.14 ublic HelloWorld{

If you made
a mistake.

public static void main() {
System.out.println("Hello World!"™):

Source IDocumentalion] |

Javelin Stamp Not Responding

If you get two messages, one of them stating that there is a possible Javelin found on COM 1,
COM 2, etc, and the second stating that there is no Javelin found on any COM port, check
your power supply. If everything compiles without errors, but you still have a communication
problem, you’ll see the progress indicator change to “Linking Program” and then “Resetting
Javelin Stamp” — but then you’ll see an error message (such as, “Javelin Stamp not found on
serial port” or “Error reading from the serial port (timeout)”.

Page 30 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

Ci t [8]: This picture is not current

2: Javelin Quick Start

In some cases a BASIC Stamp or other device may be connected to one of your other serial
ports. The software may interpret these devices as Javelins that are not responding. You can
instruct the software to look on a particular COM port by clicking the IDE’s Options button.
The Window shown in Figure 2.14 will appear. Next, click the Debugger tab. You can
choose from the known COM ports by clicking the serial port field. There is a button with
“...” on it next to the Serial Ports field. If you want to add a serial port to the list, click this
button. Then enter the number into the Com# field and click add. You can also delete a
COM port by clicking one of the known ports buttons in the list, then clicking Delete.

[]L2 Global Options [_[O[x]

Compiler | 21| Documentation |

SeialPot [aut0] .|

Figure 2.15
Debugger page of
the Global Options

window

Default Cancel

Javelin Not Detected

If the Javelin Stamp IDE did not detect a Javelin on any of the known COM ports, try the
following:

« Make sure your serial cable is properly connected to your Javelin/carrier board and
to your computer’s serial port.

e Verify that you are not using a null modem cable or adaptor.

+ If you are using the Javelin Stamp Demo Board, make sure your serial cable is
connected to the port labeled “JIDE port™.

* Make sure other software such as a BASIC Stamp Editor/Debug Terminal is using
the COM port.

« Ifyou have more than one COM ports on your computer, try connecting your Javelin
Stamp to a different COM port. Make sure the Debugger shown in Figure 2.15 is set
to either auto or to the correct port.

e Ifyou have a Palm or other PDA, see below.

‘ If YouUse a Some software — notably hot sync programs for Palm computers and other |

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 31

2: Javelin Quick Start

Palm or handheld PDA’s — will hold the serial port open even when you are not
PDA actively using it.

e If you are using Microsoft’s ActiveSync with your PDA you may
also have a conflict. If your PDA is on a USB port, you will need
to right click on the ActiveSync icon in your task bar. Then select
Connection Settings and make sure you disable the COM port.

« If your PDA uses a serial cable and you’re using MS ActiveSync
you can try specifically selecting a specific COM port by using the
same method as above. If you still have problems, disable or exit
the software.

Another thing to consider if your Javelin Stamp is not detected is that many older computers
can’t use COM1 and 3 (or COM2 and 4) at the same time. If you use a modem, for example,
try disconnecting from the Internet (or other online service) and see if that helps. A serial
mouse can also cause a problem since they are always in use by Windows. If you have a
mouse on COM1, COM3 may not be available for the Javelin’s IDE or any other program.

If you are using any adapters, unusual devices, or odd cables on the serial port, you should
double check to make sure the cable you’re using connects straight through and passes at least
the TX, RX, DTR, and GND signals Figure 2.3. If possible, try using a computer that will not
require any special adapters and remove all unusual hardware connected to the serial port.

One final thing to recheck is power. Be certain that you have the Javelin Stamp adequately
powered. If you don’t, the Javelin Stamp IDE will not be able to communicate with it, and
will report an error similar to a communications error.

If you tried all the suggestions in this section, and your Javelin still did not run the program,
try one more thing: Install the software on a different PC, connect the Javelin and attempt to
run the program. If this solves the problem, there may be some peculiarity in the BIOS
settings of the first PC.

If all else fails, there are many ways to contact Parallax Technical Support for assistance; see
inside cover for details.

Where to Next?

Now that you have a working system, you can take several paths to further your
understanding of the Javelin Stamp. If you are fairly new to both Java and circuits, continue
to the next chapter and follow through the chapters sequentially. BASIC Stamp programmers

Page 32« Javelin Stamp Manual v1.1 « www.javelinstamp.com

2: Javelin Quick Start

are also encouraged to take the same path because Chapter 3 is a first introduction to Java
programming, and Chapter 4 circuit examples and Java examples to make them work. If you
are an experienced Java programmer, skip to Chapter 4.

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page 33

3: Beginners Guide to Embedded Java Programming

This chapter contains explanations and examples to get you started, even if you have never
programmed in Java before. Make sure to read the explanations and use your Javelin to run
the example programs. Remember that all example programs in this manual are available for
download from the www.javelinstamp.com web site and also come with a standard Javelin
Stamp IDE install in the projects\examples\manual v_1 0\ directory. Keep in
mind that this is a starting point, and that many of the concepts and techniques introduced
here are discussed in more detail in Chapters 6 through 8. Also, keep in mind that you can
use this manual’s table of contents and index to look up and learn more about the keywords,
terms, and concepts introduced in this chapter.

The Class Wrapper and Main Method

There are several elements that must be present for a Java program to run:

e The program must be contained within a class definition
e The program must contain a main method
« Java commands are ended by semicolons

Think of the class definition as a wrapper for your program. After your class declaration
public class ClassName, you must place an opening brace {. At the very end of the
class, must also be a closing brace }. Your entire program, shown here as ... is contained
between these two braces.

public class HelloWorld {

}

The main method must appear within the opening and closing braces of the class definition. It
is declared using the Java keywords public static void main(). As with the class
definition, the main method has its own opening and closing braces, and within these braces
you can place Java commands.

public static void main() {

}
Here is an example of an executable Java file with two commands within its main method.

Program Listing 3.1 - Hello World Revisited

public class HelloWorldAgain {
public static void main() {

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 35

Comment [9]: Update: This will change

3: Beginners Guide to Embedded Java Programming

System.out.println("Hello world!");
System.out.println("Hello world again!");
}
}

Always remember that the class name must match the program file name, and that both are
case sensitive. Case sensitive means that capitalization matters. If you name your program
HelloWorld but declare the class to be helloWorld, the compiler will give you error
messages, and you cannot run the program until they are fixed.

Declaring Constants, Variables, and Arrays

Most programs work with two different types of quantities: variables and constants.
Variables are numbers or characters that your program reads from an external source,
computes, or changes in some way during execution. Constants are known at the time you
write the program and never change.

Let’s try declaring some variables of type int. In normal PC based Java, an int variable is
32-bits; in the Javelin Stamp, an int is 16-bits. A 16-bit int can be used to store signed
integers between —32,768 and 32,767. To create an integer, you could write:

int abc;

However, the integer’s contents are unknown until you assign a value to it:

abc = 10;

You can also declare an int variable and assign its value all in one step:

int xyz = 20;

To make a constant, simply use the £inal keyword with a variable declaration that includes
an assignment. This prevents you from accidentally modifying the constant and also allows
the compiler to generate code more efficiently since it knows the constant can’t change. Here
is an example constant:

final int invalidFlag = -1;

Program Listing 3.2 - Display Variables

public class DisplayVariables({

Page 36 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

public static void main(){
int abc;
abc = 10;
System.out.println(abc);
int xyz = 20;
final int invalidFlag = -1;

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 37

3: Beginners Guide to Embedded Java Programming

System.out.println(xyz);
System.out.println(invalidFlag);
}
}

We have already seen one method, the main () method. Additional methods that perform
specific tasks can be added to a program, and they are introduced later in this chapter. If a
variable is declared inside the main method, another method can not use that variable.
Likewise, if a variable is declared inside a special purpose method, other special purpose
methods and the main () method cannot use that variable either. In Javanese, the “scope” of
such a variable is called “local”.

You can also declare a “global” or “class” variable, which is visible to all methods within the
class. Instead of declaring the variable inside a method, you have to declare it outside of any
method, but within the class. You also have to use the static keyword. Program Listing
3.3 shows an example of a class variable declaration. This will make the variable accessible
to any method within the class.

Program Listing 3.3 - Global Variables

import stamp.core.*;
public class GlobalVariable {
static int myVar = 20;

public static void main() {
System.out.println(myVar);
}
}

The Javelin Stamp supports the following fundamental (primitive) data types: boolean,
byte, char, int, and short. You will see some of them used in the examples in this
chapter, and they are discussed in more detail in Chapter 6. Program Listing 3.4 declares and
displays an example of each of these types.

Program Listing 3.4 - Display Primitive Types

public class DisplayPrimitiveTypes{

static boolean logicValue = true;
static char character = 'a';
static short number = 900;

static int anotherNumber = -2000;

Page 38 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

public static void main(){
System.out.println(logicvalue);
System.out.println(character);
System.out.println(number);
System.out.println(anotherNumber) ;
i
}

You can also declare arrays of primitive data types. Program Listing 3.5 declares and
displays values from an int array.

Program Listing 3.5 - Example Array

public class ExampleArray{
static int [] storeNumbers = {5000,4000,3000,2000,1000};

public static void main(){
for (int i = 0; i <= 4; i++){
System.out.print(i);
System.out.print (" ");
System.out.println(storeNumbers[i]);
}
}
}

Performing Calculations

Once you have variables, it is natural to want to perform calculations with them. You can
form expressions containing variables, constants, and literals. Consider this bit of code:

int result, temporary;
final int scale = 100;

temporary = 14*2+3;
temporary = temporary/10;
result = temporary*scale;

The first two lines define variables and constants. The 3rd line performs a computation
completely with literal numbers. In reality, the compiler will perform this computation at
compile time. Since Java multiplies (and divides) before it adds (or subtracts), the result will
be 31 (not 70). See Table 6.4 for a complete list of the order of operations.

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page 39

3: Beginners Guide to Embedded Java Programming

The 4th line performs math with a variable “temporary” and the literal number, “10”.
Notice that it is common to use a variable to compute a new value for itself. This is so
common that Java has a special way to write an expression like this:

temporary/=10;

Of course, you can use terms like: *=, -=, and +=, and other Java operators too. See Chapter
6 for a complete list.

The 5th line multiplies a variable and a constant and stores the result in a variable. You can
write arbitrarily complex expressions and use parenthesis to indicate grouping. So while it is a
bit harder to read, you might have written:

result=(14*2+3)/10*scale;

This would compute the exact same result. Try Program Listing 3.6 to see these
computations. Also, try experimenting with different values and note the results.

Program Listing 3.6 - Math Example

public class MathExample {

static int result, temporary;
final static int scale=100;

public static void main() {
temporary = 14*2+3;
System.out.println(temporary) ;
Temporary = temporary/10;
System.out.println(temporary);
Result = temporary*scale;
System.out.println(result);
Temporary /= 10;
System.out.println(temporary) ;
Result = (14*2+3)/10*scale;
System.out.println(result);

}

}

Making Decisions

One common task in programming is taking action based on the value of a variable or an
expression. For example, what if you wanted to print a message if a variable was greater than
100? You can do this with the i £ statement:

Page 40 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

if (x>100)
System.out.println("Limit exceeded!");

Notice that the test expression is in parenthesis. You can also test for equality (two equal
signs; ==), less than (<), less than or equal to and greater than or equal to (<= or >=), and not
equal (!'=). These operators all return boolean values, either true or false. You can
also put any expression that returns a boolean in the parenthesis such as a boolean variable.

The statement after the parenthesis will only execute if the expression in parenthesis is true.
If you want more than one statement to be executed if the condition is true, you’ll need to
surround the multiple statements with braces:

if (x>100) {
System.out.println("Limit exceeded!");
System.out.println("Please press reset");

}

It is allowable to use braces even if you have one statement. In fact, this is a good idea since
you are less likely to mistakenly add extra lines later and forget the braces.

You can use the else keyword to specify a statement (or block of statements in braces) to
execute if the condition is false. So:

if (x>100) {
System.out.println("Limit exceeded!");
System.out.println("Please press reset");

}
else {
System.out.println("Process nominal.");

}

You may want to test several different conditions together. You can join boolean expressions
with the && (logical and) and | | (logical or) operators. You can also reverse the sense of a
boolean expression with the ! (not) operator. This code fragment tests that x is greater than
zero and also less than 100:

if (x>0 && x<100) System.out.println("In range");

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 41

3: Beginners Guide to Embedded Java Programming

For efficiency, the program will stop testing values as soon as it is certain what the end result
is. For example, suppose x is 0 in the above example. The program will test x>0. Since this
is not true (the test is > not >=) and the next expression is joined with an && operator, the
program will immediately stop testing and go to the next statement (not shown in the
example). In this case, that isn’t very important, but if the second part of the statement was a
method call or had time consuming side effects this approach to evaluating boolean
expressions can really come in handy.

The logical or (| |) operator, of course, quits evaluating expressions as soon as one of the
expressions returns true. You can write arbitrarily complex expressions and use parenthesis
to indicate grouping:

if (x>0 && (x<100 || runFlag==false)) . . .

Program Listing 3.7 demonstrates how the i f/else code discussed earlier behaves when it
encounters a true condition and when it encounters a £alse condition.

Program Listing 3.7 - Decision Example
public class DecisionExample{
static int x = 50;
public static void main(){
if (x>100) {

System.out.println("Limit exceeded!");
System.out.println("Please press reset");

}
else {
System.out.println("Process nominal.");
}
System.out.println(" ");
x = 150;

if (x>100) {
System.out.println("Limit exceeded!");

System.out.println("Please press reset.");
}
else {

System.out.println("Process nominal.");
}

}
i

Page 42 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

Repetitive Operations

One of the strengths of computers is that they can repeat steps over and over again. Java has
many ways to control program loops. This sections introduces the do..while and while
loops followed by discussion of the £or loop and flow control using break and continue.

The do..while loop always executes once. At the end of each execution, the program
decides if it should execute the loop again or continue with further processing. A while
loop decides before executing any code. That means it is possible for a while loop to never
execute if the condition required for it to execute is never met.

Here is a do loop that counts to 10:

int i=0;

do {
System.out.println(i);
i=i+l;

} while (i<=10);

If you initialized the i variable at, say, 100, the loop would print 100, compute a new i (101)
and then exit the loop since 101 is not less than or equal to 10. Adding one to a variable is so
common that Java has a shortcut for it, the increment ++ operator. You can use the increment
operator in place of i-i+1:

int i=0;

do {
System.out.println(i);
++i;

} while (i<=10);

The ++i expression adds one to the value of i. It also returns the new value for use in an
expression (a fact the code above doesn’t use). That means this could be written even more
simply as:

int i=0;

do {
System.out.println(i);

} while (++i<=10);

Technically, since this loop only has one statement, the braces are not necessary. However, it
is a good idea to include them anyway to avoid future mistakes.

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 43

3: Beginners Guide to Embedded Java Programming

The same principles apply to a while loop:

int i=0;

while (i<=10) {
System.out.println(i);
++i;

}

In this case, the test occurs before the loop. You don’t want to use ++ in the loop since that
would cause i to equal 1 during the first loop execution (unless that’s what you wanted, but
in this case you want it to match the do loop). If you change this example so that i starts out
at 100, nothing will print since the loop will never execute. Program Listing 3.8 shows both
loops doing the same thing, counting from 0 to 10.

Program Listing 3.8 - While Loop Examples

public class WhileLoopExamples {
public static void main() {

int i=0;

do {
System.out.println(i);

} while (++i<=10);

i=0; // Reset the
value of i
while (i<=10) {
System.out.println(i);
++i;
}
}
}

Java also supports a more powerful loop construct known as a £or loop. The £for loop has
three parts or clauses. The first clause executes code before the loop starts for the first time.
The second clause tests for loop completion. The third clause executes after every loop.
Semicolons separate the clauses. So if you wanted to count from 0 to 10 (as the above
examples do) you might write:

int i;
for (i=0; i<=10; i++){

Page 44 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

System.out.println(i);
}

You can even declare the variable in the first clause (as long as you only need it within the
loop):

for (int i=0;i<=10;i++)
System.out.println(i);

The first clause defines the variable and sets it to zero. The second clause tests the variable
and the third increments the variable at the end of each loop. If you want to control more than
one statement, you should use braces as before (and you can use them even if you only have
one statement in the loop).

There is nothing magic about the clauses — you can use any appropriate expression. For
example, suppose you wanted to increase the count by 2 each time instead of one. You could
write:

for (i=0;i<=10;i=i+2)
System.out.println(i);

You can omit any of the clauses you don’t need. For example, you might write:

int i=0;
for (;i<=10;i++) System.out.println(i);

You can even write endless loops using any of the three loop primitives:

for (;;) { - . -}
do { . . . } while (true);
while (true) { . . . }

Sometimes you want to exit a loop early. You can do this with the break keyword. For
example:

for (i=0;i<=10;i++) {
if (1 == 3)
break;
System.out.print(i);
}
System.out.println(“Skipping 3 and above”);

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 45

3: Beginners Guide to Embedded Java Programming

The break statement works with any loop, not just for loops. Of course, you usually use
break in conjunction with if since an unconditional break would just terminate the loop
unconditionally.

You can also cause a loop to proceed to the next iteration (if any) by using continue.
Suppose you wanted to count from 0 to 10, but you want to skip 5. There are many ways you
might write this, here’s one way:

for (i=0;i<=10;i++) {

if (i==5) continue; //
proceed to i=6

System.out.println(i);

}

Program Listing 3.9 demonstrates £or loops and the break, and continue keywords.

Program Listing 3.9 - For Loops

public class ForLoops{
public static void main(){

int i;

for (i=0;i<=10;i++){
System.out.println(i);

}

for (int j=0;i<=10;i++) System.out.println(i);
for (i=0;i<=10;i=i+2) System.out.println(i);

i=0;
for (;i<=10;i++) System.out.println(i);

for (i=0;i<=10;i++) {
if (i == 3) break;
System.out.println(i);

}
System.out.println("Skipping 3 and above");

for (i=0;i<=10;i++) {

if (i==5) continue; // proceed to
i=6

Page 46 ¢« Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

System.out.println(i);
}
}
}

Displaying Messages from the Javelin

Many of the earlier examples have demonstrated how you can use System.out.println
to print a line to the Javelin debug window. You can also use System.out.print to print
data without appending a new line. For example, consider this program:

public static void main() {
System.out.print("Hello ");
System.out.println("World");
}

The first statement prints “Hello” but does not start a new line. The second statement prints
“World” directly following the first text and then starts a new line.

The print and println statements will accept most data types (for example, integers) and
perform the necessary conversion to a String. So this small program is legitimate:

public static void main() {
for (int i=0;i<10;i++) System.out.print(i);

}

Of course, there are times you might want to print the ASCII representation of a number (65,
for example is a capital A). You can do this by casting the integer variable to a character,
using (char) before the variable:

for (int i=65;i<70;i++) System.out.println((char)i);

Although it’s not recommended for anything but a few initialization commands, in simple
cases you can use the + (concatenation) operator to string items together, as in this example:

int t=100;
System.out.println("The threshold is

"

+ t + " degrees.");

The Javelin does not support garbage collection and the compiler will
CAUTION create strings that the Javelin can never recover. If you use a command
that uses the + (concatentaion) operator within a loop, you will run out of

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 47

3: Beginners Guide to Embedded Java Programming

| memory very quickly.

The above snippet has been re-written with separate print lines to achive the same result
without having to worry about the lack of garbage collection.

int t=100;

System.out.print (“The threshold is “);
System.out.print(t);
System.out.println(” degrees.”);

Another approach is to use a StringBuffer object:

StringBuffer buf=new StringBuffer(32); // 32
byte string

buf.append("The temperature is ");

buf.append('7');

buf.append('0');

buf.append(" degrees");
System.out.println(buf.toString());

In this way, you can use the buf variable again (unlike the compiler-generated temporary in
the first example, which is not reused).

You can also use the CPU.message method to send a character array to the Messages from
Javelin window. This requires fewer resources than the System.out.print method, but
it is also less flexible since this method only accepts a character array. Here’s an example:

String test="Parallax Javelin";
CPU.message(test.toCharArray(),test.length());

Notice that a String is not a character array, so the toCharArray call is required to
perform the conversion. The second argument to message is the length of the array (which

in this case is the same as the length of the String).

The CPU.message call does not automatically start a new line. You can include a new line
(™\n”) in the string to force a new line, as in this example:

String test="\nParallax Javelin\nWow!";
CPU.message(test.toCharArray(),test.length());

Page 48 ¢ Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

Notice that the System and CPU objects are static. You don’t need to create these
objects before using them. They are always present. However, if you don’t use an import
stamp.core. * or similar statement, you’ll have to refer to the CPU object by its full name:
stamp.core.CPU.

Keep in mind that the debug terminal only exists when the Javelin is physically connected to
the PC. If the Javelin is running while disconnected from the PC, these messages are not
displayed. Program Listing 3.10 shows these examples in action.

Program Listing 3.10 - Assorted Messages

import stamp.core.*;
public class AssortedMessages({
public static void main() {

for (int i=0;i<10;i++){
System.out.print(i);

}
for (int i=65;i<70;i++) System.out.println((char)i);

StringBuffer buf=new StringBuffer(32); // 32 byte
string

buf.append("The temperature is ");

buf.append('7');

buf.append('0');

buf.append(" degrees");

System.out.println(buf.toString());

String test="Parallax Javelin";
CPU.message(test.toCharArray(),test.length());

test="\nParallax Javelin\nWow!";
CPU.message(test.toCharArray(),test.length());
}
}

Sending Messages to the Javelin

Sending messages to the Javelin Stamp was first introduced in the Running the Javelin Stamp
IDE and Loading a Test Program section of Chapter 2, see Figure 2.9. The Terminal
allows you to either read a character, or determine if any characters are waiting to be read.

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 49

3: Beginners Guide to Embedded Java Programming

Here is a simple example that just waits for you to press any key. The program doesn’t care
which character you press, so it doesn’t record the value:

public static void main() {
System.out.println("Press any key to continue");
Terminal.getChar();
for (int i=1;i<=10;i++) System.out.println(i);
System.out.println("Press any key to exit");
Terminal.getChar();

}

Program Listing 3.11 reads characters and converts them to uppercase. Remember that the

messages from Javelin window can be used for bi-directional communication. Figure 2.9 in

Chapter 2 shows the transmit terminal at the bottom of the Messages from Javelin Window.

After running Program Listing 3.11, simply click the transmit terminal. Next, try typing a few

characters. The characters will appear in the transmit terminal, and they will also be echoed C t [10]: Insert reference
in the messages window above. Immediately after each echoed character, you will also see
the Javelin Stamp’s converted character.

Program Listing 3.11 - Capitalize

import stamp.core.*;
public class Capitalize {

public static void main() {

char c;
System.out.println("Begin");
do {
c=Terminal.getChar(); // Get character from keyboard
if (c>='a' && c<='z') { // Test if it’s not a capital
int tmp=(int)c; // Create and assign ‘tmp’ the
char ¢ as an int
tmp=tmp-32; // Convert lower case to upper by
subtracting 32
c=(char)tmp; // Assign int tmp into char c
} // end if
| System.out.print(c); // Output character|
} while (c!=27); // Do the above until escape key
ls}pressed J/ cnd madm .Comn‘.len.t [11]: ‘Ifwe move this linelup above the end
} // end Capitalize if then it will not print to capital letters, just one, and l/c

with the convert

There is never a need to create a terminal object, it is always available. You must import
stamp.core or use the full name stamp.core.Terminal. Keep in mind that the

Page 50 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

debug terminal only exists when the Javelin is connected to the PC. If the Javelin is running
while disconnected from the PC, a debug window will not be available to you to accept input.

The getChar method stops your program’s execution
until a key is ready for reading. The
Terminal.byteAvailable () method returns true
if there is at least one character waiting to be read. This
method allows you to decide whether or not to perform
other processing while waiting for keyboard input.

Creating a Method

Once you start writing programs, you’ll find there are things you want to use over and over in
your program, but you don’t want to keep rewriting the same program steps. Not only is
rewriting the same steps tedious, it is not a very efficient use of the Javelin’s resources. The
solution for this problem is to use methods.

Any method must be within a class, and not within another method. So, your program might
look like this:

import stamp.core.*;
public class MyExample {

// Custom methods could go here

public static void main() {
// Your main program
// contains code that makes use of your custom methods.

}

// Custom methods could go here

}

The simplest method is one that performs a task, but does not expect information or returns
any information. The void before the name of the method means that the method is not
returning information, and the empty parentheses () indicates that the method does not expect
to receive any information either.

static void startMessage(){

System.out.println("This program performs some
calculations.");

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 51

3: Beginners Guide to Embedded Java Programming
}

A command inside the main method can then “call” this method, for example:
public static void main (){
startMessage();

X

A method can also receive information and act on it, but not return anything. Here is a
method that receives a number, multiplies it by 5, and then displays it. Note that a variable is
declared to receive the value.

static void display5X(int i){
i=1i%*25;
system.out.println(i);

}

A command in the main method that wants to display 5 X 5 could then send a 5 to the
display5X method by placing a 5 inside the parentheses of the method call:

public static void main (){
display5X(5);
}

A method can send back a value without receiving one. In this case, the method itself is
declared to be an int value, but the parentheses are empty. If a method is sending back a
value, it must do so using the return keyword.

static int sendBackValue(){
i = 20;
return i;

}

A command in the main method that wants to receive this value can do so by setting a
variable equal to the method call.

Page 52« Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

public static void main (){

int x;
x = sendBackValue();

A method can both receive and return a value as shown here. Note that only one local
variable was declared for the incoming variable. In this case, the method multiplies the value
it receives by 9 and returns the answer.

static int performOperation(int j){
j = 9%3;
return j;

}

A command in the main method that wants to send this method a value (such as 7) and
receive the answer would look like this:

public static void main (){

Ent Y;
y = performOperation(7);
)
A method can receive more than one value. Here is a method that averages five numbers:
public static int avg(int nl, int n2, int n3, int n4, int n5)
! return (nl+n2+n3+n4+n5)/5;
}

Notice that the method is named avg and it expects five arguments and returns the avereage,
an int value. The parentheses in the return statement’s expression are required because
Javelin would otherwise divide before adding.

You don’t necessarily have to set a variable equal to the method to capture the value. For
example, a command in your main method, or another method in the same class, can simply

use println to display the value returned by the avg method:

System.out.println(avg(10,13,99,7,12));

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 53

3: Beginners Guide to Embedded Java Programming

You can also provide variables or expressions:
System.out.println(avg(10+x,13/y,z1,22,12));
You can even combine this method with other items in expressions:
sigmaT=avg(a,b,c,d,e) + 100/x;

Program Listing 3.12 demonstrates the use of some of the methods and method calls just
discussed.

Program Listing 3.12 - Method Example
public class MethodExample({

static int sigmaT, a = 1, b=1, ¢ =3, d=4, e = 5;

static void startMessage(){
System.out.println("This program performs some calculations.");

}

static void display5X(int 1i){
i=1i=*5;
System.out.println(i);

}

static int sendBackValue(){
int i = 20;
return i;

}

static int performOperation(int j){
J = 9*3;
return j;

}

public static int avg(int nl, int n2, int n3, int n4, int n5) {
return (nl+n2+n3+n4+n5)/5;

}

public static void main(){
startMessage();
display5X(10);
int x;

Page 54 Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

x = sendBackValue();
System.out.println(x);
int y;
y = performOperation(7);
System.out.println(y);
System.out.println(avg(10,13,99,7,12));
SigmaT = avg(a,b,c,d,e) + 100/x;
System.out.println(sigmaT);
}
}

Creating and Using a Library Class

A method does not have to be in the same file as the program you are writing. You can call a
method from your main method that exists in a separate file. That method can call a method
in yet another file, and so on... You can also write classes that contain methods to perform
various operations. Here is a simple library file that was saved as LibraryFile. java in
the tproj ects\examples\manualivlio‘ folder. It has no main methods, just two

methods that some other program can call.

Program Listing 3.13 - Library Class: Library File

package examples.manual_vl_0;
public class LibraryFile{

public static void countToTen(){
for (int i = 0; i<=10; i++){
System.out.println(i);
}
}

public static void countToTwenty () {
for (int i = 0; i <= 20; i++){
System.out.println(i);
}
}
}

Program Listing 3.13 is an example program that you can run that uses the coutnToTen ()
method in LibraryFilejava. The programmer has to do a few different things to make the
methods in LibraryFile available. Before the class declaration, there is a compiler directive
that tells the Java compiler to import all the files in the examples.manual v1 _0.* folder.

import examples.manual_vl_0.*;

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 55

Comment [12]: Update: This will change

3: Beginners Guide to Embedded Java Programming

This means that any class in the examples.manual vl 0 folder can be accessed without
having to refer to the class by path and name. This makes declaring a LibraryFile object
easier because instead of writing:

static Projects.examples.manual_v1l_0 myLib;
You can simply write:
static LibraryFile myLib;

This declaration creates an instance of a LibraryFile object named myLib. Now, you
can use the methods in the instance of LibraryFile java named myLib. How? Just use the
term myLib, followed by a dot, followed by the method you want to call within
LibraryFile.java. For example:

myLib.countToTen() ;

If LibraryFile had public constants and variables, they would also be at the programmer’s
disposal using the same technique. shows how to make a new LibraryFile object and call one
of its methods.

Program Listing 3.14 - Library Class: Executable Uses Library File

import examples.manual_vl_0.*;
public class ExecutableUsesLibraryFile{
static LibraryFile myLib;

public static void main(){
System.out.println("Library file displays count to 10:");
myLib.countToTen() ;
}
}

The ability to access reuseable code in library files is one of Java’s most powerful features.
Chapter 4 makes extensive use of library files. The library files in the 1ib\stamp\core
folder contain library files with methods designed to make it easy to use the Javelin Stamp to
read sensors, control circuit outputs, communicate with peripherals, and more. This folder
and its collection of library files is referred to as a package, the core (or stamp.core) package
in this case.

Page 56 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

3: Beginners Guide to Embedded Java Programming

The core package is introduced in Chapter 4, and documented in Chapter 9. There are many
other packages available, such as java.lang, java.io, stamp.util, and so on. The library classes
in these packages are discussed in Chapters 7 and 8. The library files that come with the
Javelin Stamp install are also documented in HTML format and can be accessed following the
Online Help link after clicking the Help button in the Javelin Stamp IDE. You can also view
Online Help by loading C:\Program Files\Parallax Inc\Javelin Stamp
IDE\lib\index.html into your web browser’s address field.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 57

4: Application Examples — Circuits and Programs

Circuits and Example Code

This chapter has a few circuits and example program listings for you to try. There are two
other chapters in this manual where you can find circuits and accompanying program listings:

+ [Chapter 2: Quick Start Guide
« Chapter 9: Javelin Stamp Hardware Reference

The beginning of Chapter 3 contains some recommendations for those new to Java on how to
use the explanations and examples. Similar recommendations apply for material in this
chapter, and they are listed below:

* All example programs in this manual are available for download from the
www.javelinstamp.com web site and also come with a standard install in the
‘Projects\examples\manualivilio\‘directory.

* Many of the concepts and techniques introduced here are discussed in more detail in
Chapters 6 through 9.

* You can use this manual’s table of contents and index to look up and learn more
about the concepts introduced in this chapter.

About Solderless Breadboards

If you haven’t built circuits on a solderless breadboard before, it’s easy once you know what’s
underneath the surface of the breadboard. Figure 4.1 (a) shows the top view of the
breadboard and prototyping area on the Javelin Stamp Demo Board while (b) shows the
connections underneath the breadboard. Each row of five holes on either side of the slot
running through the center of the breadboard is electrically connected underneath. If you
want to connect two components together, just plug into the same row of five sockets.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 59

Andrew Lindsay

Comment [13]: Take inventory of circuit
examples in text and list here.

Comment [14]: Update: This will change

4: Application Examples — Circuits and Programs

Figure 4.1 Javelin Stamp Demo Board Solderless Breadboards

13 12 13 12
°e Vm e Vm

oo Black oo Black

x4 X5 RevB

Vdd Vm Vin Vss Vdd Vm Vin Vss
X X
P15 pis DOOO0 D000
pig Pl DOOOO DOOOO
p1a ooooo pol DOOOO DOOOO
p1 poM DOOOD OO0
. ciH DOOOO DOOOO
.y rol DOOOO DOOOO
Fo ro Doooo Doooa
e o Hooooo ooooo
e P W ooooo poooa
et L HWooooo ooooo
ooooo| |ooooo CWWWR W]
P5 PS e O D0
P4 P4 DOOOG DO
P3 PO OO0 D0
gf Ef CWWCWR CWOWCRR]
5 FHooooc poooo
< 5 DOOO0 DHO00]
2
(a) Top View (b) Underneath View of

Connections

Also note the sockets to the left of the breadboard labeled PO, P1...P15. These give you
access to the Javelin’s 16 general purpose I/O pins. The sockets above the breadboard are
labeled Vdd, Vm, Vin, and Vss. Here is what each of these labels stands for:

Vdd =+ 5V, used as the positive supply terminal for most of the circuit examples
shown in this manual.

Vm = motor voltage. You can connect this to either Vdd or Vin to supply the
positive terminal for your servo port (header labeled X5). If you are using the
Javelin Stamp Starter Kit, which comes with a 1000 mA supply, connect Vm to
Vdd. If you are using a 6 V battery pack like the one that comes with the Parallax,
Boe-Bot, connect Vm to Vin.

Vin = the positive terminal of the unregulated input voltage coming from the DC
Power Supply or battery pack. Be careful, DC Power Supplys labeled 9 V DC
often deliver a much higher voltage, like 12 or even 15 V when the current draw is
low.

Vss = Ground, 0 V, the negative supply terminal for the examples shown in this
manual.

Page 60 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

Pushbutton and LED Revisited

Program Listing 4.1 below revisits Figure 2.13 in Chapter 2. When the switch is pressed, the
program lights the LED for a predetermined time interval. The switch, on pin 1, connects to
ground. There is a 10 k pull up resistor between the pin and +5 V. Therefore, when the
switch is open, the input reads as a one. Pushing the switch causes the Javelin to read a zero.

Program Listing 4.1 - LED Push Button

import stamp.core.*;
public class LEDPushButton {

// Define Variables & Constants

final static int LED = CPU.pin0; // To control the
L.E.D.
final static int SWITCH = CPU.pinl; // To control the
Button
final static boolean ONSTATE = false; // Button Pressed Down
final static boolean OFFSTATE = true; // Button Normal State
public static void main() {
CPU.writePin(LED,OFFSTATE) ; // Turn LED off
while (true) { // Do loop forever
if (CPU.readPin(SWITCH)==ONSTATE) { // Was button pressed?
CPU.writePin(LED,ONSTATE) ; // Turn LED On
CPU.delay(25000); // Wait (while LED on)
CPU.writePin(LED,OFFSTATE) ; // Turn LED Off
} // end if
} // end while
+ // end main
} // end LEDPushButton

Notice that instead of placing the pin constants in the program, LEDPushButton defines
several constants (marked with the £inal keyword). This allows you to easily change the
11/O definitions. The ONSTATE and OFFSTATE constants allow you to easily adapt the
program to use a switch and LED that are active with a logical 1 state.

The main program uses writePin to make sure the LED is off. There is no need to
explicitly set the pin to an output (or input). All pins are inputs when the Javelin resets. Any
call to writePin (or other output methods) will automatically turn the affected pin (or pins)
into an output.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 61

4: Application Examples — Circuits and Programs

Next, the main program loops forever using while (true). This is not uncommon in
embedded programs. The program tests for the switch closure, and when it detects it, it lights
the LED, pauses, and turns the LED off again. The loop resumes waiting for another switch
depression. Of course, if you hold the switch down, the loop will immediately turn the LED
on again. This happens so fast, that it will appear the LED stays on as long as you hold the
button down.

Page 62« Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

Digital to Analog Conversion

The Javelin can generate voltages on any of its output pins with the addition of some simple
circuitry. The Javelin doesn’t really generate a voltage. Instead, it generates a train of pulses
that you can average with a resistor and capacitor as shown in Figure 4.2.

Aakofxw
Figure 4.2 <
Circuit for use +

with DAC I ue
object L
AT

This program creates an analog output on pin 14. Then it ramps the voltage up by calling
update inside a loop. A value of 0 generates a 0 voltage, and a value of 255 generates 5 V.
Values in between generate a proportionally different voltage.

Because of the delay, you can watch the voltage change on an ordinary voltmeter. If you
have access to a fast scope, reduce the delay value and watch the ramp on a scope.

Program Listing 4.2 - Make Voltage

import stamp.core.*; // Import Javelin’s classes
public class MakeVoltage { // class declaration
public static void main() { // main declaration
DAC dac = new DAC(CPU.pinl4); // create new DAC object
while (true) { // do while loop forever
for (int i=0; i<255; i++) { // loop 0v to +5v
dac.update(i); // Update DAC with new
voltage
CPU.delay(1000); // Delay
} // end for
for (int j=255; j>=0; j--) { // loop +5v to Ov
dac.update(j); // Update DAC with new
voltage
CPU.delay(1000); // Delay
} // end for
} // end while
+ // end main
} // end class declaration

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 63

4: Application Examples — Circuits and Programs

Analog to Digital Conversion

Delta Sigma Analog to Digital Conversion is one of the more exciting new virtual peripherals
on the Javelin. It lets you read an analog voltage from any I/O pin using just a few passive
components. Figure 4.3 shows the circuit for use with Program Listing 4.3. You can connect
any value between 5 V to 0 V, and the ADC object will return a number between 0 and 255
corresponding with the input voltage. This number corresponds to the duty cycle required to
keep the voltage at P9 at the 2.5 V. CMOS logic threshold.

Figure 4.3 Circuit for use with ADC object

Program Listing 4.3 - ADC Test

import stamp.core.x*;
public class ADCTest {

final static char CLS = '\u0010';
static int ADCValue;
static ADC voltMeasurer = new ADC(CPU.pin9, CPU.pin8);

public static void main() {

while(true){
CPU.delay(5000);
ADCValue = voltMeasurer.value();
System.out.print(CLS);
System.out.println("ADC value is: ");
System.out.println(ADCValue);
} // end while
} // end main
// end class
declaration

Measuring Resistive and Capacitive Elements

Page 64 Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

rcTime has been used by BASIC Stamps to measure resistive and capacitive values for over
10 Years now. Resistive and capacitive sensors are very common, and rcTime offers an
easy inexpensive way to get measurements from these sensors. Reading an rcTime value
depends on either R or C remaining constant while the other component’s value (a sensor)
varies. In Figure 4.4, the 1 uF capacitor is constant, and the photoresistor varies with light
exposure. As the value of R varies with light, the value of RxC varies as well. The fact that
RxC varies is crucial, because it changes the speed at which the voltage at the capacitor’s
lower plate responds to changes. In this example, the Javelin Stamp is used to measure this
response time. The technique shown in the Program Listing 4.4 below is simple. It takes two
commands to set up the reTime measurement:

CPU.writePin(CPU.pins[4],true);
CPU.delay(10);

These commands apply voltage to the circuit so that the voltage at the RC connection
approaches 5 V.

Then, the command:
dischargeTime = CPU.rcTime(10000,CPU.pins[4],false);

performs the measurement and saves it in the dischargeTime variable.
CPU.rcTime (10000,CPU.pins[4],false) changes P4 from an output to an input
and starts tracking time, waiting for the voltage at the capacitor’s lower plate to drop below
the 2.5 V logic threshold. This amount of time is proportional to RxC, and the math is
discussed in the documentation for the reTime () method in Chapter 9.

Vvdd
I 1.0 uF
Figure 4.4 P4
Circuit for use 220
with rcTime "
¥
Photo-
resistor
V;e

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 65

4: Application Examples — Circuits and Programs

Program Listing 4.4 - Photo Resistor

import stamp.core.x*;
public class PhotoResistor {

final static char CLS = '\u0010';
static int dischargeTime;
static int chargeTime;

public static void main() {

while(true){
System.out.print(CLS);
CPU.writePin(CPU.pins[4],true);
CPU.delay(10);
dischargeTime = CPU.rcTime(10000,CPU.pins[4],false);
System.out.print("RC rise time is: ");
System.out.println(String.valueOf (dischargeTime));
CPU.delay(10000);

}

}
}

Controlling a Servo with a Background PWM Object

The PWM object can be used to vary the brightness of a lamp or LED (assuming the device
doesn’t exceed the Javelin’s drive capability). With appropriate drive electronics you can also
use this command to control the speed of a DC motor or the brightness of lights that are too
large to drive directly. However, the Javelin requires an external driver (like a transistor or
FET) to handle the current required by a motor or a large light.

Sending Control Pulses to a Servo Motor

Many robotic and motion projects use servo motors to provide motive force. These motors
are convenient since they accept a digital logic input and all the power control electronics are
onboard. Typically, these motors don’t rotate. Instead, they move between two extremes.
However, there are many ways to modify the servos to achieve continuous rotation.

The servo’s digital input requires a pulse. The details may vary depending on the type of
servo you have. However, a typical servo requires a 1.5 ms high pulse to go to the center
position (this corresponds to standing still for a modified servo). You must supply a pulse
roughly every 20 ms to tell the servo what position you want or else the servo will not supply
much force to hold its position (for most servos, at least). The range of pulse widths for a
typical hobby servo range from 1.0 to 2.0 ms. Pulses shorter than 1.5 ms will cause the shaft

Page 66 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

to move in one direction away from the center and longer pulses will cause the shaft to rotate
in the other direction. If the servo runs continuously, short pulses will cause the shaft to rotate
in one direction and long pulses in the other. The more difference between the input pulse
and the reference 1.5 ms pulse will affect the speed of the motor in this case.

If you are building this circuit on the Javelin Stamp Demo Board, use a wire to tie Vm to Vdd
on the power header (X3). Then, plug the servo into the servo port labeled 12. Make sure
that the black (ground) wire for the servo lines up with the Black label next to the servo port.

\at

PRo————
Rl

BRad<

—=

\&s
Figure 4.5 Circuit for use with DAC object

It is easy to use the PWM class to control a servo. This class allows you to specify the on time
and the off time of a pulse. Program Listing 4.5 allows you to enter characters into the
Messages from Javelin terminal to control the position (or rotation) of a servo. When you run
the program, the Messages from Javelin window will appear and prompt you to enter one of
three characters to adjust the servo’s position to either right, left, or center. Click the field
below the messages window and enter your characters there (See

Figure 4.6).

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 67

4: Application Examples — Circuits and Programs

'L:Message From Javelin _[ofx
Figure 4.6 N B
f -1 By
Entering — Co‘w cﬁe 7 Enabled

Mess?geSIWOthe Welcome to Servo Control:
Terminal Window r - right

|»

1 - left
¢ - center
rlclcr

a1 o

Irlclcv

Program Listing 4.5 - Basic Servo Control

import stamp.core.*;

public class ServoControl {
static PWM servo = new PWM(CPU.pinl2,173,2304);
public static void main() {

System.out.println("Welcome to Servo Control: ");
System.out.println(" r - right");
System.out.println(" 1 - left");
System.out.println(" c - center");

while (true) {
switch (Terminal.getChar()) {
case 'r':
servo.update(130,2304);
break;

case 'l':
servo.update(220,2304);
break;

case 'c':
servo.update(173,2304);
break;

}

}

Page 68 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

i
}

You can also use the PWM class in the same way you use the DAC class. The output voltage is
proportional to the ratio between the on time and the off time. Usually the DAC class is more
convenient for this purpose.

Communicating with Peripheral ICs

The DS1620 (Figure 4.7) is a one of many ICs on the market that the Javelin Stamp can
communicate with using the CPU class shiftIn and shiftOut methods. This particular
IC reports the temperature it measures in }5-degrees Celsius increments. Program Listing 4.6
makes use of a DS1620 class that comes in the stamp.peripheral.sensor.temperature package.
Every library class listing has an HTML page that describes the methods you can call from
the code you are writing. To view this HTML page:

v Click the Help button in the Javelin Stamp IDE.
v Click the Online Help Link.

—or—
use your we browser to view:
C:\Program Files\Parallax Inc\Javelin Stamp

IDE\lib\index.html

v Click the stamp.peripheral.sensor.temperature link.
v Click the DS1620 link.

The first datum on this HTML page is the path to the DS1620.java file. Program Listing 4.6
uses this information to import this file using the compiler directive:

import stamp.peripheral.sensor.temperature.DS1620;

The information in the constructor summary and constructor detail is used to declare a new
DS1620 object:

DS1620 indoor = new DS1620(CPU.pin4,CPU.pin5,CPU.pin6);
Now, the methods of the DS1620 class, which are also described on the HTML page, are

available to the programmer. For example, the setTempLo () method is called using the
command:

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page 69

4: Application Examples — Circuits and Programs

indoor.setTempLo (68, 'F');

and the getTempF () method call is nested inside another method call that appends the
temperature returned to the end of a StringBuffer object named msg:

msg.append (indoor.getTempF());

So that you can see the shiftIn() and shiftOut () methods at work, Program Listing
4.7 performs the temperature measurement without making use of a library class. The circuit
is the same for both programs. Use Figure 4.7 to build your circuit, and make the following
1/O pin connections between the Javelin and the DS1620:

- dataPin to P4
e clockPin to P5
e enablePin to P6

Page 70 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

Vdd

N\

dataPin ©—AMWNV—1| ba Voo s

1k
. CLK .
Figure 4.7 clockPin D—E /CoNy THeH H—D highThermostat
DS1620 Circuit
enablePin ©—————s|RST Tiow [s—————— lowThermostat

4|GND Tcom B—D combinedThermostat
DS1620

Vss

Program Listing 4.6 - Simple DS1620
import stamp.core.*;
import stamp.peripheral.sensor.temperature.DS1620;
public class testDS1620_2 {
final static char HOME = 0x01;

public static void main() {

DS1620 indoor = new DS1620(CPU.pin4,CPU.pin5,CPU.pin6);
StringBuffer msg = new StringBuffer(128);

// set A/C thresholds
indoor.setTempLo (68, 'F');
indoor.setTempHi(78,"'F');

while(true) {
// get temps (build msg)
msg.clear();
msg.append (HOME) ;

msg.append(" F \nInside.... ");
msg.append (indoor.getTempF());
msg.append(" F \n\nA/C....... ")

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 71

4: Application Examples — Circuits and Programs

// check A/C settings
if (indoor.tempLo())
msg.append("Heat");
else if (indoor.tempOk())
msg.append("Off ");
else if (indoor.tempHi())
msg.append("Cool");
else
msg.append("? e

System.out.println(msg.toString());
CPU.delay(10000);
}
}
}

Program Listing 4.6 communicates with a DS1620 without the use of a library class, and it
demonstrates how numeric values are sent back and forth between the Javelin Stamp and the
DS1620 using the shiftIn() and shiftOut () methods. Compared to Program Listing
4.6, Program Listing 4.7 really highlights how much simpler and more powerful your code
can be when you use a library class to do the job.

The segment of code below is from the dsTemp () method in Program Listing 4.7, and it is
important because it uses shiftIn() and shiftOut () to communicate bi-directionally
with the DS1620. Before communicating with the DS1620, its enablePin must be set to
true. Then a command, hexadecimal AA for report temperature, is sent to the DS1620
using the shiftOut () method. Next, the variable data is set equal to the shiftIn ()
method. Since 9 bits of data are shifted in LSb-First into the 16-bit data variable, the shift
right operator >>7 is used to shift the data another 7-bits to the right. The extra shift is
always necessary when shifting in LSb-first or shifting out MSb-first. For more information
on the shiftIn () and shiftOut () methods, see Chapter 9.

CPU.writePin(enablePin,true);
CPU.shiftOut (dataPin,clockPin,8,CPU.POST_CLOCK_LSB,command) ;
data =
((CPU.shiftIn(dataPin,clockPin,9,CPU.SHIFT LSB)>>7));

CPU.writePin(enablePin, false);

Program Listing 4.7 - Shift DS1620

import stamp.core.*;

Page 72 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

public class ShiftDS1620 {
// declare I/0 pins connected to DS1620
final static int dataPin = CPU.pin4;

final static int clockPin CPU.pin5;
final static int enablePin = CPU.piné6;

// Home character used for placing the cursor in the Messages from
Javelin Window

final static char HOME = 0x01;

// DS1620 codes for initialization and for requesting temperature
measurement

final static int WRITE_CONFIG = 0x0C;
final static int WRITE_TL = 0x02;
final static int START CONVERT = OXEE;
final static int READ_ TEMP = OxAA;

static int DSValue, sign, i, data;
static int[] setup = {WRITE_CONFIG,WRITE_TL,START CONVERT};

// Using a loop, the dsInit method (below) accesses values in the
setup array

// (above). The shiftOut command is what clocks each value into
the DS1620.

static void dsInit(int config[]) {
CPU.writePin(enablePin, false);
CPU.delay(10);
for (int i = 0; i < config.length; i++) {
CPU.writePin(enablePin,true);
CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT LSB,config[i]);
CPU.writePin(enablePin, false);
} // end for
} // end dsInit

// The dsTemp method accepts commands from the main routine and
uses

// the shiftOut() method to send this value to the DS1620. Then
the shiftIn()

// method is used to shift in the temperature data from the DS1620.
The

// positive or negative value is returned to the main routine.

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 73

4: Application Examples — Circuits and Programs

static int dsTemp(int command){
CPU.writePin(enablePin,true);
CPU.shiftOut(dataPin,clockPin,8,CPU.SHIFT LSB,command);
data = ((CPU.shiftIn(dataPin,clockPin,9,CPU.POST_CLOCK_LSB)>>7));
CPU.writePin(enablePin, false);

sign = data >> 8;
if (sign == 1) {
return -data;

}

else
return data;
} // end dsTemp

// The main routine calls the dsInit method to initialize the
DS1620,

// then it gets the temperature value from the dsTemp method and
displays it.

public static void main(){
dsInit(setup);

while (true){
System.out.print (HOME) ;

System.out.println ("Celsius temperature: ");
System.out.println(dsTemp(READ TEMP)/2); // Divide by 2
for deg-C
CPU.delay(5000);
¥ // end while
} // end main
} // end class
declaration

Communicating with Other Computers

Using the built-in Uart virtual peripheral, it is easy to communicate with a PC or other
microcontroller. Since virtual peripherals always run in the background, you don’t have to
constantly poll for serial input. If input arrives while your program is doing something else,
the virtual peripheral will buffer the data for you until you decide to process it. Each Uart
object handles communication in one direction, so for two-way communications, you’ll need
two Uart objects.

You can find more information about the Uart class in
Chapter 9.

Page 74 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

Figure 4.8(a) shows the connection diagram for a full duplex hardware flow controlled
UART. You can connect this to a serial cable via an RS232 transceiver like the MAX 233 or
you can use the COM port connections on the Javelin Stamp Carrier board as shown in Figure
4.8(b). Program Listing 4.8 will use this connection to communicate with you through your
PC’s HyperTerminal program. If you are using the Javelin Stamp Carrier Board, make sure to
connect the serial cable used by HyperTerminal to the port labeled COM Port.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 75

4: Application Examples — Circuits and Programs

Figure 4.8 COM Port Connections

PO D

Javelin Stamp

Do
o

1/0 pins {>° Port
o

P2 D

P3 <

-
‘Q 0.0 Reset

RS232
Transceiver

(a) using an RS232 chip (b) using Javelin Stamp Demo Board

If you want to build your own driver circuit, use Figure 4.9 as a reference for the connections
made in Figure 4.8. Keep in mind that this COM port is designed to connect to a computer’s
COM port. If you want to communicate with a peripheral instead of a PC, you will need to
add a null modem adaptor. See the next section entitled Communicating with Peripheral
Devices for more information.

TTL Level Signals: Rs232 Level Signals
Oto5V 1 1 +12t0-12V
1 2 2
3 3 This COM port is connected
[«4 (W o« — 4 4 to a‘PC serial port gsinga
<« 3[WH 8+ —— , straight-though serial cable.
e el e
com | 7 04 7 @
port 8 8 = It can be connected to a
Vss peripheral (modem, mouse,
9 9 | etc.) using a null modem
adaptor.

Sp237

Figure 4.9: Javelin Stamp Demo Board COM port Connection Diagram.

If you are using one cable for both HyperTerminal and Javelin Stamp IDE, you will need to
close the Javelin Stamp IDE after you load the program into the Javelin. Then, open

Page 76 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

HyperTerminal and start a new session. For connection, choose Direct to the COM port you
will be testing. Select Properties from the File menu, then select the Configure icon from the
Connect To tab. Choose the following settings:

« Bits per second 9600

« Data bits 8

e Parity No

« Stop bits 1

« Flow control Hardware

When your Javelin Stamp is running Program Listing 4.8 and HyperTerminal is connected
(select Call from the Call menu), you can press and release the Javelin’s Reset button to
restart the program. Then, follow the prompts that appear in HyperTerminal for entering
messages. If your JIDE port and COM port can be connected to two separate serial ports on
your PC, use Debug and take a look at the contents of the buffer fields inside the UART
objects.

Program Listing 4.8 - Bi-directional Communication with HyperTerminal

import stamp.core.*;

public class HyperTermCOM { // COM Port (9-
pin serial)

final static int SERIAL_TX PIN = CPU.pinO; // 2
final static int SERIAL_RTS_PIN = CPU.pinl; // 7
final static int SERIAL_CTS_PIN = CPU.pin2; // 8
final static int SERIAL_RX_PIN = CPU.pin3; // 3

static Uart txUart = new Uart(Uart.dirTransmit, SERIAL_TX_ PIN,
Uart.dontInvert,
SERIAL_RTS_PIN, Uart.dontInvert,
Uart.speed9600,
Uart.stopl);

static Uart rxUart = new Uart(Uart.dirReceive, SERIAL_RX PIN,
Uart.dontInvert,
SERIAL_CTS_PIN, Uart.dontInvert,
Uart.speed9600,
Uart.stopl);

static StringBuffer buffer = new StringBuffer(128);
static char c;

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 77

4: Application Examples — Circuits and Programs

static void bufferMessage(){

c = 0xff;
while (c != '\r'){
if (rxUart.byteAvailable()){
c = (char)rxUart.receiveByte();
buffer.append(c);
}
}
// end
bufferMessage

public static void main(){
do{
buffer.clear();
txUart.sendString("Type a message, the press enter: \n\r");
bufferMessage();
txUart.sendString("The message you sent was: \n\r");
txUart.sendString(buffer.toString());
txUart.sendString("\n\rDo you want to enter another message?
(y/n) \n\r");

c = (char) rxUart.receiveByte();
} while(c == 'y' || ¢ != 'n');
txUart.sendString("Goodbye!\n\r");
} // end main
} // end class
declaration

Communicating with Peripheral Devices

You can use the Javelin Stamp to communicate with one or more asynchronous serial
peripheral devices. Some of the more interesting and useful serial devices that can be
incorporated into embedded applications include:

« LCDs

* Mice

e Camera modules
e GPS units

e Phone modems

Without the null modem adaptor, the COM port on the Javelin Stamp Demo Board is
designed to be connected directly to a computer’s serial port. In this configuration the port
will behave just like any other serial peripheral device. If you want to connect the Javelin
Stamp to a serial peripheral device, simply attach the null modem adaptor to the Javelin
Stamp Demo Board’s COM port, then attach the peripheral to the null modem adaptor. This

Page 78 ¢ Javelin Stamp Manual v1.1 « www.javelinstamp.com

4: Application Examples — Circuits and Programs

makes, the Javelin Stamp Demo Board’s COM port behave like a computer, and it can
communicate with a serial peripheral device.

v

v

v
v

Connect a serial modem to the null modem adaptor included in the Javelin Stamp
Starter Kit.

Connect the null modem adaptor to the Javelin Stamp Demo Board’s COM port (not
to the JIDE port)

Use the previous example’s circuit (Figure 4.8).

You can use Program Listing 4.9 to call the Javelin Stamp at Parallax.

txUart.sendString ("ATDT19166240160\r");

Note: If you do not live within the 916 area code, a long distance toll charge will apply. A
simple test that you can do and avoid the long distance charge is to substitute your own phone
number for the Parallax Javelin’s phone number. Most modems will send a BUSY message
back to the Javelin Stamp.

v

Run Program Program Listing 4.8 to communicate with the serial modem.

Program Listing 4.9 - Modem Test

import stamp.core.*;

public class ModemTest {

//
//
//
//
//
//

On Demo board's X4

connect pin 0 to DB9-2

connect pin 1 to DB9-7

connect pin 2 to DB9-8

connect pin 3 to DB9-3

The Demo board has a level converter

final static int SERIAL_TX_PIN = CPU.pin0;
final static int SERIAL_RTS_PIN = CPU.pinl;
final static int SERIAL CTS_PIN = CPU.pin2;
final static int SERIAL_RX_PIN = CPU.pin3;

static Uart rxUart = new Uart(Uart.dirReceive, SERIAL_RX PIN,

Uart.dontInvert,

SERIAL_CTS_PIN,Uart.speed9600,
Uart.stopl);

static Uart txUart = new Uart(Uart.dirTransmit,

SERIAL TX PIN,Uart.dontInvert,

SERIAL_RTS_PIN, Uart.speed9600,

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 79

4: Application Examples — Circuits and Programs

Uart.stopl);
public static void main() {

/* You can use this phone number to call a Javelin Stamp

* connected to a modem at Parallax. A long distance charge will
apply.

*

* A simple test that costs little or nothing is to use your own
phone

* number. The modem typically sends the Javelin Stamp a BUSY
message

* since the Javelin Stamp is dialing the same number it is
calling.

*/

txUart.sendString("ATDT19166240160\r");

// display modem's response (if any)
while (true) {
System.out.print((char)rxUart.receiveByte());
}
}
}

Figure 4.10 shows what’s inside the null modem adaptor. Note that it re-routes transmit lines
to receive pins and visa-versa.

1 °
6
2 3
. 3 2
Flgure 4.10 Db9 Connector
Null modem on Javelin Stamp 4 1
Demo Board Peripheral device
adaptqr Labeled: 6
connection COM Port
diagram 5 5
7 8
8 7
9 —X X— 9

Page 80 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

The Javelin Stamp IDE (Integrated Development Environment) provides a work environment
where you can write, run, and debug your Javelin Stamp programs. In addition, you can view
the javadoc documentation from within the IDE.

Starting the IDE

You can run the IDE by selecting the icon from your Start menu. From Windows, press on
the Start button on your menu bar. Mouse up to Programs, scroll over and mouse to the
Javelin Stamp, scroll over once more and select the IDE and the program will begin. You
may wish to maximize the window (double click on the title bar, use the system menu on the
left-hand side of the title bar, or use the maximize button to the right-hand side of the title
bar).

By default, you’ll see two command areas just below the title bar. The first area holds the
main menu (which has items for File, Edit, etc.). The second area is a toolbar that has small
icons to execute common methods. Below the tool bar, you’ll see a tab that reads
Untitled.java. This is the name of the file you are editing. If you open multiple files, each
will have its own tab and you can switch between them by clicking on the tabs. The area
below the tab is where the text will appear. The gray area to the left will contain indicators
while debugging, as you’ll see shortly.

Setting Global Options

Before you get started, it is a good idea to review the option settings found within the Global
Options... under the Project menu. The dialog (see Figure 5.1) that appears has three tabs.
The first tab, Compiler, should contain the Class Path and the path to the compiler. Having
the correct Class Path is vital so that the IDE can find the library files required for your
programs. Be careful not to change the settings unless you are certain you know what you are
doing (you’ll learn more about changing the Class Path at the end of this chapter).

Figure 5.1 Global Options for IDE

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 81

5: Using the Javelin Stamp IDE

. Global Options [1O[x] JIL1 Global Options M= JIL2 Global Options M=

| Debugger | Documentation | Compier | Debugger

Classpath Serial Port [4UT0 = _]

[C:\Progrem Files\Paralax Inchavelin Stamp IDEVb.C:\Progia | aud
Enter the path to the root of the Java class brary

[C:\Program Files\Parallax Inc\Javelin Stamp IDE\doe
Enter the path to the documentation.

Java Compiler Javadoc Path
€ Program Fles\Parallas Inc\lavein Stamp IDE ikes\kes ex | v [iavadoc.exe [=|
Enter the path ofthe Jikes compir. Enter the path ta the javado Ut

Defauit 0K | concel Defait_| oK Cancel Defat_| Cancel
a) Compiler b) Debugger c) Documentation
99

The Debugger tab has a single option that allows you to set the COM port you’ve used when
connected your Javelin Stamp. The IDE uses this port to communicate with the Javelin
Stamp. You can press the Auto button and the IDE will attempt to detect the Javelin Stamp
automatically.

The final tab, Documentation, allows you to set the path to the javadoc files and the javadoc
program. You’ll read more about javadoc later in this chapter.

If you change things inadvertently, you can push the Default button to restore everything to its
original state. For now, the only thing you should change is the COM port setting on the
Debugger tab.

Starting a Project
To start a project, you can just begin defining a class in the Untitled.java window. However,
it is easier if you use the Insert Template under the File menu to insert a prototypical class
into the editor workspace.

Here is the code inserted by the Insert Template command:

import stamp.core.*;

[x*

* Put a one line description of your class here.

* <p>

* This comment should contain a description of the class.
what it

Page 82« Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

is for, what it does, how it use it.

You should rename the class and then save it in a file with
exactly the same name as the class.

EE I

@version 1.0 Date

* @author Your Name Here
*/

public class MyClass {

// Put variables here.
static int myVar;

public static void main() {
// Your code goes here.

}
}

You’ll need to change MyClass to an appropriate name. You’ll also want to alter the
comments and myVar variable to suit your program. Java requires that each file have only
one public class and that the class have exactly the same name as the Java file (including the
case of the name). So if your class is MyFirstClass, you should save the file as
MyFirstClass. java Save or Save As under the File menu.

You can also ask the IDE to help you write your code by invoking specific templates. If you
press CONTROL+J while editing a file, you’ll see a list of templates you can insert. For
example, if you select the for (count) template, this will appear in your file:

for (int i = 0; i <; i++) {

}

If you’ve already typed a partial statement, pressing CONTROL+J will automatically insert
the correct template without displaying a list. For example, if you enter i £ and then press
CONTROL+], the IDE will automatically insert the code template for 1 £.

Table 5.1 shows the available templates and the keywords that will automatically invoke
them.

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 83

5: Using the Javelin Stamp IDE

Table 5.1: Javelin Templates|

Menu Item Menu ltem Menu Item
Template Keyword Example Comment [15]: Do something better with this table
Array declaration Arrayii int[]={1,2,3}
Class declaration Class public class {
Class declaration (with Classes public class extends
extend) Object {
5
Complete program Program See above example
For statement For for(;;){
}
For statement (count) Forc for (inti=0;i<;i++){
}
If If if (){
}
If else Ife if (){
}
else {
}
Try/catch Tryc try {
catch () {
}

Page 84 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

Table 5.1: Javelin Tem

lates|

Menu Item

Menu Item

Menu Item

Try/catch/finally

Tryf

try {
}
catch () {

}
finally {
}

While

While

while ()¢

}

Do while

Whiled

do {

} while ();

Switch statement

switch

switch () {
case a:
break;

case b:
break;

}

Switch statement (with
default)

switchd

switch () {
case a:
break;

case b:
break;

default:

}

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 85

Comment [15]: Do something better with this
table

5: Using the Javelin Stamp IDE

Table 5.1: Javelin Templates|

Menu Item

Menu Item

Menu Item

Method declaration

method

[**
*
*

* @param
* @return
*/

void () {

}

Method declaration
(public)

methodp

[x*
*
*

* @param

* @return

*/

public void () {

}

Method declaration (with
throws)

methodt

=

*

*

* @param

* @return

*/

public void () throws
Exception {

}

Field declaration

field

[**
*

*/
int ;

Debugging output

debug

System.out.printin("");

Building your Program

There are several ways to build your program depending on what you want to do with it. On
the Project menu you’ll find five important menu items:

Page 86 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

Comment [15]: Do something better with this table

5: Using the Javelin Stamp IDE

* Compile — This option simply converts your source code into a class file. This will
catch any compile-time errors, but it won’t send any code to the Javelin Stamp.

* Link — Linking takes all the class files referred to by your program and binds it
together for transmission to the Javelin Stamp. However, it doesn’t actually send
any code to the Javelin Stamp either.

* Program — This is the most common option. It compiles, links, and downloads
your program to the Javelin Stamp.

* Debug — This command is similar to the Program command, but it also adds the
necessary code that allows the IDE to debug your program.

* Resume Debug - If you are debugging a program and you get interrupted (perhaps
you shut your computer down and restart it later), you can start a new debugging
session without having to recompile, relink, and download. This does not resume
your previous debugging session. It simply allows you to start a new one without
reprogramming the Javelin Stamp.

When you use the Program option, the Javelin Stamp will run the program by itself. If you
use one of the Debug options, the Javelin Stamp will require commands from the IDE to
execute, so you’ll want to use Program before you detach the Javelin Stamp. The Compile
and Link options are handy for testing your program’s syntax before downloading it to the
Javelin Stamp.

Dealing with Errors

Of course, sometimes you’ll have compile-time errors (such as syntax errors) that will prevent
any of the above commands from working. For example, suppose you left the static
keyword off of the two variable declarations in the example program:

Program Listing 5.1 - My Test Class (Dealing With Errors)

// (This program contains intentional errors)
import stamp.core.*;

class MyTestClass {

// Put variables here.
int pause=5000;
boolean state=false;

public static void main() {
while (true) {
CPU.writePin(CPU.pin0,state);
state=!state;
CPU.delay(pause);

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 87

5: Using the Javelin Stamp IDE
}

}
}

The two variable declarations should really look like this:

// Put variables here.
static int pause=5000;
static boolean state=false;

When you try to compile, run, or debug the program a window appears at the bottom of the
IDE. This window will contain four error messages (see Figure 5.2). The error message
shows the type of error, the file name, the line number, and the actual error message. In
complex programs, compiling one file may cause other files to compile, so pay close attention
to the file name, as it may not be the same as the current file name.

Regardless of the file name, double clicking one of the error messages will take you to the
part of your program where the compiler detected the error. Notice that this is not always the
same place as where you created the error.

In this case, for example, the first error message is:
The name “state” does not denote a class (static) variable

This error appears on the CPU.writePin line. However, the real error is not on this
line. The mistake here is that the state variable is an instance variable while the main
method is (by necessity) static. A static method can’t directly access instance
variables, so an error occurs. All by itself, there is nothing wrong with creating an instance
variable named state, so the compiler can’t guess that this line is in error. That’s because
syntactically it isn’t in error. The only reason the line is incorrect is because the program uses
the variable contrary to its declaration and the compiler detects the error when the program
tries to use the variable. The real mistake, of course, is in the declaration and that is where
you’ll have to fix the program.

Page 88 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

L. JIDE [_[O[x]
| Fie Edt Project Debug Help

= $ BB o § | O F
New Open.. 5 Cut Copy Paste Undo | Options.. | Compie Progiam Debug

MyTestClass java

import stamp.core.®;

class HyTes

int pause=5

Figure 5.2 boolean state=false;
Error public static void main{) (
Messages while (true) {

CPU.writePin(CPU.pind,state) ;
state=!state;
CPU.delay (pause)

not de] vai
ioes not denote a class (stalc) vaisble
does not denote class (static) varisble:

y B
U IMyTe: javall3)
[Java Error] MyTestClass java(13])
[ava Enor] MyTestClass javal 14}

Source [Documentation] | v

Entor: The nar

The other three errors follow the same logic. Even though there are four errors on three
different lines, only two things require repair and they aren’t on any of those lines at all. Of
course, you need to make the two variable declarations static. You could also elect to
have main create a new MyTestClass object and call an instance method (which could
then directly refer to non-static fields). However, that’s a major change to the program’s
design, not a repair.

Using the Debugger to Look Inside the Javelin

In a perfect world, you would write your program, download it to the Javelin, and be finished.
In real life unfortunately, it isn’t unusual for a program not to behave as you expected.
Luckily, the Javelin’s built-in debugger makes it very easy to troubleshoot misbehaving
programs.

Of course, debugging won’t help you locate syntax errors and other problems that prevent
your program from compiling. You can find these by reading the messages the compiler and
linker generate. However, just because the compiler thinks your program is correct doesn’t
mean the program does what you think it does. The compiler can accept a program that
doesn’t do what you want it to do (that is, your program contains an error in it’s logic). That’s
where the debugger comes into play.

Javelin Stamp Manual v1.1* www.javelinstamp.com * Page 89

5: Using the Javelin Stamp IDE

To start the debugger (Figure 2.11), press the Debug button on the toolbar (or press
CONTROL+D or select Debug from the Project menu). The debugger window that appears
has several useful buttons and tabs:

* Run — This button starts your program executing under the debugger. The program
will stop at a breakpoint, if any are set. You can set a breakpoint clicking in the gray
area to the left of a program line, using CONTROL+B, or using the Toggle
Breakpoint from the Debug menu (in the main Javelin window). A line with a
breakpoint appears highlighted in red and has a red dot in the left margin.

¢ Stop — If the program is running, the Stop button will cause execution to halt as
though a breakpoint had occurred.

* Step Into — When the program is stopped, this will cause one line of program code
to execute. If the line makes a method call, the new stop location will be inside the
called method.

e Step Over — When the program is stopped, this will cause one line of program code
to execute. If the line makes a method call, the Javelin will attempt to execute the
entire method before stopping again. Notice that some program lines make multiple
method calls, so the stop position will appear not to move until you press the Step
Over button multiple times.

* Toggle Breakpoint — Push this button to place (or remove) a breakpoint on the
current line. When the program executes this line, the debugger will stop and wait
for further user commands.

* Reset — Press this button to restart the program from the beginning.

e Show Message Window — This button displays the window the Javelin uses to
display messages.

e Call Stack — This tab shows you the method calls that are currently active. So if the
main method calls method A, and method A calls method B, you’ll see main, A,
and B in the display window when this tab is active. The window also shows local
variables and fields.

* Static Variables — This tab allows you to examine the static variables of each class in
your program. Click on a ‘+’ sign to expand the display to see details, then click the
‘=" sign to hide those details again.

* Memory Usage — Use this tab to display statistics about how much memory your
program is using.

Comment [16]: Is this expected behavior or is it a
bug?

The easiest way to learn to use the debugger is to load a simple example program and start the
debugger. Use the Step Over and Step Into commands while examining the different tabs in
the debugger window. Set a breakpoint on a line and use the Run command.

Page 90 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

The compiler can detect your syntax errors, but it can’t find mistakes in the logic of your
program — only you can do that. That’s why the IDE was programmed to have sophisticated
debugging support to help you examine what your program is actually doing and make it
easier to spot mistakes.

Once you clean up any compile errors you can begin to debug the program. Select Debug
under the Project menu (or CONTROL+D) to begin the debugging process. Once the IDE
downloads the program to the Javelin Stamp, you’ll see a green bar indicating the first line of
your program that will execute. You’ll also see a debugging window (see Figure 5.3).

/.. JIDE JI[=] B3| [Debugger T [=] B3
| Fie Edt Project Debug Help 1] & % ® 1 E|
= 5 Fun Siop | Steplnto StepOver | Breakpoint Reset | ShowMessage Window
0D & W ¥ [&&d &)
New Open.. Gove Gavehl | Cut Copy Paste Undo | Optins.. | Comple Progiam Debug || CallStack | Static Variables | Memor Usage |
MyTestClass ava | 4
import stamp.core.?; A
class HyTestClass (
// Put variables
static int pause=5000:
static boolean state=false;
public static void maini) {
£ while (true) {
CPU.writePin(CPU.pin0,state);
state=!state;
CPU.delay (pause)
¥
¥
i
KIS _'l_l
Source | ion] |

A
Figure 5.3/ Javelin Stamp IDE and Debugger

The debugging window has a toolbar that mimics the method on the main Debug menu
(covered shortly). It also has three tabs: Call Stack, Static Variables, and Memory Usage.
The Call Stack tab shows the current method executing, along with the return path from
methods that are in the middle of calling this method. The Static Variables tab shows you the
name and value of all static variables. Finally, the Memory Usage tab allows you to examine
how much memory your program is using and how much of that memory is code or data.
You can also use the table at the bottom of the debug window to examine memory usage for
each class in your program. If the debug window is small, you may have to increase its size
vertically (by dragging the window border) to make the table visible.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 91

Comment [17]: ANDY: This is an old screen
shot, we need a new one.

5: Using the Javelin Stamp IDE

If you lose the debug window accidentally, you can always get it back by selecting Show
Debug Window from the Debug menu. In addition, you can make the message window
visible by selecting Show Message Window from the Debug menu. The message window
shows any output your program sends using System. out or CPU.message. You can use
System.out.println to write debugging messages to the message window to help you
debug your program.

There are several ways to execute your program. If you select Run from the Debug menu (or
the green arrow in the toolbar, or F9) then the program will execute normally. [To stop the
program), you can select Stop from the Debug menu (or the double red bars in the toolbar, or

F8).

If you want the program to stop at a particular spot, you can do this by setting a breakpoint.
Place the cursor on the line in question and select Toggle Breakpoint from the Debug menu
(CONTROL+B), or use the stop sign on the toolbar. You can also click on the gray area to
the left of the line. In any event, you’ll see a red stop sign icon appear in that left-hand area to
indicate the breakpoint. Repeating the step will turn the breakpoint off and make the stop sign
icon disappear.

Sometimes you don’t know where you want the program to stop. In that case, you can single
step through the program. The Step Into menu item (on the Debug menu) causes your
program to execute one line of source, and steps into method calls. Step Over is the same,
except that any method calls will run to completion. The green execution bar will show you
which statement will execute next. You can use F7 for Step Into and F8 for Step Over. On
the toolbar, these operations show a small box with an arrow pointing into the box (Step Into)
or jumping over the box (Step Over).

While stepping through the program or if you are stopped at a breakpoint, you can always
resume execution with the Run command. This will cause the program to continue until it
ends or it encounters another breakpoint.

The only other command on the debug menu is Reset (CONTROL+F2). This causes the
Javelin Stamp to prepare to run the program again. In other words, a Step Into, Step Over, or
Run command will start the program at the beginning after a Reset.

An Example Debugging Session

Using the DebugExample (see Program Listing 5.1) type it in exactly as you see it (if you
think you see a mistake, leave it as it is). Save the file in DebugExample. java. The
intent of this program is to blink an LED with a 2 second off time and a half-second on time.
The idea is to use a half-second (that’s 5000 100us periods) time base and only turn the LED

Page 92 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

Comment [18]: Verify if VP’s run while the program
is stopped

5: Using the Javelin Stamp IDE

on every fifth count. Of course, you can wire the LED so that the LED will be off every fifth
count and on the remainder of the time — the important point is that the LED will be in one
state for a single 500 ms period and in the opposite state for 2 seconds.

You can run the program by selecting Program from the Project menu. However, it doesn’t
work. Why not? You might be able to find the answer by inspecting the program, but often
debugging is easier.

To prepare for debugging, select Debug from the Project menu (or press CONTROL+D).
Your screen should look like the one in Figure 5.4. The green bar and arrow in the source
code tells you that you the next line that will execute. The Call Stack tab in the debug
window shows you that you are in the main method.

[LJIDE IS [=1 B3} JIi. Debugger [_[o[x]
| File Edt Project Debug Help & o ° . =l
0 & LB B o Sty Bl | B Gz | Gl
New Open. Cut Copy Paste Undo | Opions.. icVariables | Memory Uisage |
| ugE ramplezmain()
42 ioutof scope
import stawp.core.®;, | 8 testoutof scope
s 25 app
Figure 5.4
Stepping
through
Code 4
test=(i%5)==0;
if (test=true)
CPU.vritePin(CPU.pin0, true);
else
CPU.writePin(CPU.pind, false) ;
CPU.delay (5000) ;
)
)
d -
‘ 3
Source [ion] | 2

Use F7 to step through the program a line at a time. Notice that the Call Stack tab also shows
the local variables (like i and test). Press F7 until you make one pass through the loop and
notice the state of the local variables at each step.

On the first loop (where i is 0) everything seems to work, as you’d expect. On the second
pass however, pay particular attention to the if statement. Press F7 until the green bar rests
on the if statement (and i is equal to 1). Before executing the if statement, the test
variable is false. That’s right because 1 is not evenly divisible by 5 so %5 is not equal to

Javelin Stamp Manual v1.1 www.javelinstamp.com * Page 93

5: Using the Javelin Stamp IDE

0. Now press F7 to step through the if statement. Suddenly, test is now true and the
incorrect branch of the i £ executes. Do you see why?

Careful observation of the if statement shows that there is only one equal sign! Instead of
testing to see if test is true, this statement sets test to true and therefore assures that
the else clause will never execute. The answer — or at least, one answer — is to change the
single equal sign to two equal signs. On the other hand, you could rewrite main like this:

public static void main() {
for (int i=0;i<1000; i++) {
CPU.writePin(CPU.pin0, (i%5)==0);
CPU.delay(5000);
}
}

Editing Text

The IDE text editor window works the same as any other Windows editor. You can use the
File and Edit menus as shown in Table 5.2 and Table 5.3.

Table 5.2: File Menu Commands

Menu ltem Command Shortcut
New Start a new document CONTROL+N
Insert Template Insert a sample class definition CONTROL+J
Open... Open an existing file CONTROL+O
Reopen Opens a recently used file ALT,F, R
Save Save the current document CONTROL+S
Save As... Save the current document with a new ALT,F, A
name

Close Close the current document CONTROL+F4
Print Print the current document CONTROL+P
Exit Ends IDE ALT,F, E

You can also use common Windows shortcuts to perform common editing operations shown
in Table 5.3.

Table 5.3: Edit Menu Commands

Menu ltem Command Shortcut

Undo Undo the last editing action CONTROL+Z

Page 94 « Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

Cut Remove the selection to the clipboard CONTROL+X

Copy Copy the selection to the clipboard CONTROL+C

Paste Paste the clipboard contents to the CONTROL+V
document

Select All Select all text CONTROL+A

Find and Replace... Find or find and replace text CONTROL+F

Find Again Repeat last find operation F3

Toolbars and Menubars

You can move the main menu to different locations by grabbing the double vertical bar to the
left-hand side of the menu and dragging. You can move the menu anywhere horizontally, and
you can move the menu to two different vertical locations.

You can also drag the toolbars around in this fashion. In addition, you can drag the toolbars
into the main window area to convert them into floating windows. If you want to restore
them to their bar state, you can drag them to the top window border and they will stick. By
grabbing the double bar to the left-hand side of the toolbar, you can move the toolbar to
different locations.

Another way to issue commands is to right click on the file’s tab at the top of the editor
screen. Right clicking will display a menu that will allow you to compile, debug, program,
manipulate projects (covered shortly), or close the current file. Note that the menu commands
always apply to the current document, even if you right click another document’s tab.

Class Path Considerations

One of the most critical aspects of working with any Java or Java-like development tools is
the CLASSPATH. Each time you name a class in your program, the compiler searches for
the appropriate class file by searching the directories named in the CLASSPATH (you’ll find
more about this topic in Chapter 3).

It is crucial that the directories in the CLASSPATH refer to the correct class files, and not
class files aimed at another target system (like the PC, for example). In addition, if you create
your own libraries of code, you’ll want to place the correct directories for that code in the
CLASSPATH.

Selecting Global Options under the Project menu will give you a Global Options window.
You can select the Compiler tab to view the CLASSPATH variable. You can directly change
the string you find there if you like. It is simply a list of paths separated by semicolons. The
paths should be absolute (e.g., c: \myclasses\1ibl instead of ..\1ib1).

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 95

5: Using the Javelin Stamp IDE

However, it is easier to change the CLASSPATH by pressing the ... button next to the path
(see Figure 5.5). Here, you can change each part of the path separately. You can use the ...
button to browse your files and the up and down arrow buttons to alter the order of each
directory in the CLASSPATH. The order is important, because the compiler begins searching
with the first directory, and proceeds in order. Once it finds a suitable class file, it stops
searching, so if two directories in the CLASSPATH contain class files named the same, the
first one mentioned in the CLASSPATH will override any subsequent directories.

[l Choose Path [_[O[x]

Ordered path search ist:

C:\Proaram Files\Parallax Inc'Javelin Stamp IDE\ib, i ‘ﬁ
C:\Program Fﬂes\P;raHax InctJavelin Stamp IDE\ib
B :

o

Figure 5.5
Class Path
Settings
| Fleplace oeee |
Cancel

Working with Packages

If you make a class or a group of classes that you want to reuse, you might consider putting
them in a package. First, at the start of the java files that contain your classes, you’ll put a
package statement. The convention is to use your inverted Internet domain name (for
example, com.parallaxinc) to begin the package name. After that, you can use as many words
as you like separated by periods.

For example, consider this class:
package com.parallaxinc.testlib;

public class doubler {
private int val;
public doubler(int v) { val=2*v; }
public int value() { return val; }

}

This class (doubler) is part of the com.parallaxinc.testlib package. You need to save the file
(or at least the class file) in a file that is in several subdirectories. In particular, the file name
must be com\parallaxinc\testlib\doubler.java. This is a relative path name.

Page 96 * Javelin Stamp Manual v1.1 « www.javelinstamp.com

5: Using the Javelin Stamp IDE

The compiler will look in the current directory and in all the CLASSPATH directories for this
directory structure. So imagine that your CLASSPATH had a single directory in it
(c:\classes) and that the current directory is c: \projects. The compiler will look for
com.parallaxinc.testlib.doubler inthe doubler. java file. It will search for
that file in:

c:\projects\com\parallaxinc\testlib and in
c:\classes\com\parallaxinc\testlib

To use the doubler class, you’d need to refer to its entire name, or use an import
statement. For example, you might write:

com.parallaxinc.testlib.doubler dbl = new com.parallaxinc.testlib.doubler(20);

Notice that you have to use the entire name every time you refer to the object. This is not
very convenient so you’ll usually use an import:

import com.parallaxinc.testlib.doubler;
doubler dbl = new doubler(20);

Remember, the packaged class must be in the correct directory tree and that directory tree’s
root directory must be in the CLASSPATH.

Working with Projects

You can organize your work into projects. From the main file of the project, you can select
Make Project from the Project menu. You can also right click the file’s tab and select Make
Project from the resulting menu (if this option is gray, you have not saved the file yet).

Once you’ve made a project, the tab for that file will have a file folder icon to the left of the
file name. One project can be active at a time. The active project will have a green
checkmark in the file folder.

Projects are useful when you want your Java file to have its own options. The active project
has its own private options that you can access by selecting Project Options from the Project
menu. From here you can set the class path for compilation, the debugger settings, and
packages you want to include in the javadoc documentation. You can also specify the
directory where the IDE will create documentation.

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 97

6: Javelin Stamp Programmers Reference

This chapter details the Java language as it is used with the Javelin Stamp. Java, is a language
developed by Sun Microsystems, and many find its syntax and structure similar to C++
(which is an object-oriented extension to C). However, there are two major differences:

1. Java is strictly an object-oriented system. You can use C++ without using objects,
but Java requires you to use objects at all times.

2. Java handles some of the more error-prone parts of programming to reduce the
burden on the programmer.

If you don’t know object-oriented programming, don’t worry. It does require you to change
how you approach programming a little, but the payoff is well worth the effort. If you’ve
programmed in virtually any other language, you’ll find Java is simple to learn. If you’ve
looked at books about Java before, you may have been put off by the complexity of the
example programs. That’s because most books concentrate of graphical user interfaces,
which are complex by their very nature. In an embedded system, programs are usually much
more straightforward.

Java Differences

If you are an experienced PC Java programmer — or you plan to read about Java — you should
be aware that the Javelin Stamp uses a subset of Sun Microsystems’ Java 1.2 class libraries.
The Javelin Stamp also does not encompass certain variable types and object behaviors that
PC Java programmers may expect to see. These differences are necessary to allow the Javelin
Stamp to execute your programs on such a small computer and to ensure that embedded
programs behave properly.

This manual shows you how to develop embedded applications using the Javelin Stamp.
Experienced Java Programmers should consult Chapter 10, Summary of Java Differences
before continuing. Java programmers are also encouraged to review the example programs in
this manual for a clearer understanding of the scope of Javelin Stamp embedded projects and
the way the Javelin Stamp utilizes a subset of Java for project development.

Getting Started

Every Java program consists of at least one public class. Of course, larger programs may
consist of many classes of different types. To make your class executable, it must contain a
static main method. You can generate a templatefrom the IDE program by selecting Insert
Template from the File menu. Be sure to replace MyClass in the generated code with a
unique name. Save your new class file with the same name as the name you used in the class
definition. For example, the class MyClass is saved as a file named MyClass.java..

Javelin Stamp Manual v1.1 www.javelinstamp.com ¢ Page 99

6: Javelin Stamp Programmers Reference

Java statements can extend to multiple lines and must end with a semicolon. This is similar to
C or C++ and is referenced as a code block. You can have nested blocks of code, in fact there
is no limitation to how many blocks of code you can have nested within blocks of code.

What About the Braces?

In Java, curly braces surround groups of statements. This group is called a code block.
Consider the if statement. This statement evaluates a boolean expression and executes the
following statement if the expression is true. If you want to execute multiple statements,
you must enclose them in braces so the compiler will see them as a single code block.

Of course, you can enclose a single statement in braces, if you like. In other words, these two
if statements are the same:

if (x==0)
System.out.println("zero value");

if (x==0) {
System.out.println("zero value");

}

Using the second form helps prevent a common mistake. Often, you’ll go back to add code to
the if (or similar statement) and forget to add the braces, which are now necessary. For
example:

if (x==0)
System.out.println("zero value");
System.out.println("Please restart”);

The indenting of the code makes it appear that the if controls both println statements.
However, this is not correct. The compiler doesn’t actually pay attention to indentation —
that’s just to make your code more readable. In this case, the “Please restart” message will
always appear no matter what the value of x is. The correct code is, of course:

if (x==0) {
System.out.println("zero value");
System.out.println("Please restart”);

}

Some code must be grouped. For example, the code in a class declaration must be within
braces. However, for if, for, while, and similar statements you can omit the braces if

Page 100 * Javelin Stamp Manual v1.1 * www.javelinstamp.com

Comment [19]: We’re really talking about the use of

white space here. We should address the use of white
space to enhace the readability of the source code. I just
can’t figure out where to put it without a ton of rewrites.

6: Javelin Stamp Programmers Reference

(and only if) the statement controls only one other statement. If there are multiple statements,
you must surround them in braces. Notice that you don’t place a semicolon after the closing
brace.

The compiler doesn’t really care about the indentation level. It also doesn’t pay attention to
where you place your braces. Many Java programmers follow the standard borrowed from
the C language. This standard places the opening brace at the end of the line and then indents
the following lines. The closing brace then appears on a line by itself, indented to the same
level.

Some programmers have adopted one of two newer styles of writing braces. In both of these
styles, both braces appear on their own lines. The only difference is how the braces indent.
Consider these two examples:

if (x==0)
{
System.out.println("Ready");

}

if (x==0)

{
System.out.println("Ready");

}

Regardless of what style you use, you should pick one and stick to it. Using consistent braces
and indentation will help you visually inspect your code for mismatched braces.

Variables, Types, and Constants

Variable store values, such as numbers or letters, or references to objects. Objects will be
discussed later in the chapter. Each variable has a characteristic, called a data type, which
describes what kind of data will be stored in the variable. The Javelin Stamp supports five
fundamental data types, listed in Table 6.1 below.

Table 6.1: Fundamental Data Types

Type Description
boolean True/False value
char 8-bit ASCII (not Unicode) character (\u00’ : “uFF’)
byte 8-bit signed integer (127 : -128)

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 101

6: Javelin Stamp Programmers Reference

short 16-bit signed integer (32767 : -32768)
int 16-bit signed integer (32767 : -32768)

In Program Listing 6.1 you can see the variable declaration (int i;) and an assignment
statement that computes a value and stores the result in i. Names are case-sensitive in Java,
so it is possible (although not a good idea) to have another variable named I. Having two
variables I and i makes reading the code much more confusing.

You can assign a value when you declare a variable as in this example:

int i=10;

You can also define multiple variables of the same type in a single line of code:
int i,j,k=33,loopctr=0;

You can create literal characters by using single quotes around any ASCII character. For
example:

char stop='X’;

Let’s look at the Calculate class in Program Listing 6.1. Notice that there are two places
where variables are declared. The usecount variable is declared outside of the main ()
method, but inside of the Calculate class declaration. The variable i is declared within
the main () method. The difference between these declarations has to do with something
called scope. Scope defines the area of your code where a declaration is visible. The i
variable is visible only to the code in the main() method. Other methods in the
Calculate class cannot access it. The i variable is created when the main () method is
called and destroyed when main () returns.

The usecount variable is declared outside of any method, so it can be accessed by the
methods within the class. This variable is declared at the class level. Variables declared at this
level are called Fields. Fields are discussed in more detail later in this chapter.

Program Listing 6.1 - Calculate

public class Calculate { // class Declaration

int usecount; // Variable Declaration

Page 102 « Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

public static void main() { // main Declaration
int i; // Create i variable to
store calculation
1=33%*9; // Perform calculation
System.out.println(i); // Print result
+ // end main
} // end class declaration
Constants

Sometimes you’d like to make a variable that has a constant value. For example, you might
want to write:

int scale = 100;

However, let’s say that your program should never change the value. It is a constant. In the
line above, your program could, perhaps by accident, change the value of scale. The Java
compiler has no way to know that the value should never change, and it might be able to
generate better code if it knew that was the case.

To solve this problem, you can modify the type of the variable by declaring the variable to be
final . This tells the compiler that the value of the variable is permanent and can’t be
changed. A final variable is always initialized with a value when it is declared, because you
can’t change the value after it has been declared. For example, the declaration:

final int scale= 100;

defines an integer constant equal to 100.

Table 6.2 shows some escape sequences used to generate special characters (like a single
quote, or a new line). You can also use a C-style escape, \ddd (where ddd is the octal value
of a character. String literals follow the same rules, but you enclose them in double quotes,

not single quotes.

Table 6.2: Escape Sequences

Sequence Meaning
\b Backspace
\f Form Feed
\n New line
\r Carriage return

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 103

6: Javelin Stamp Programmers Reference

\t Tab

\u0013 Clear Screen

\\ Backslash

\ Single quote

\” Double quote

XXX Any character
(xxx is octal
number)

Number Bases

You can also specify literal integers in octal (base 8) or hexadecimal (base 16) form. Octal
numbers have a 0 (zero) prefix, while hexadecimal (or hex) numbers have a 0x (zero x)
prefix. This can be tricky. Consider this code fragment:

int x=010;
System.out.println(x);

The result printed is 8, because the leading zero marks the literal 010 as an octal number.
Expressions

When you write x=10+3, x=x+1, or even x=0 you are assigning an expression to the x
variable. Expressions combine variables and constants using operators (see Table 6.3).

Table 6.3: Basic Java Operators|

Operator Definition Operator Definition
- Ci t [20]: We talk about a couple of the
t+ Pre or post increment < Less than operators in more detail later in this chapter. I think we
- Pre or post decrement <= Less than equal to should probably treat all of them with a small paragraph,
~ Bitwise invert > Greater than s 0 gyl
! Boolean invert >= Greater than equal to
* Multiply == Equal to
/ Divide 1= Not equal to
% Remainder from integer division & Bitwise AND
+ Addition, String concatenation) A Bitwise exclusive OR
- Subtraction | Bitwise OR
<< Left shift && Logical AND
>> Right shift with sign extension |l Logical OR
>>> Unsigned right shift 7 Conditional (ternary)

Page 104 * Javelin Stamp Manual v1

.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

Consider this line of code:
x=5+3*2

The value of x depends on the order in which the expression is evaluated. If the addition is
performed before the multiplication, the result would be 16. However, if the multiplication is
performed before the addition, the result is 11. The correct answer is 11. You can see that the
order in which the expression is evaluated is very important. Java addresses this issue by
applying a set of precedence rules to the expression. It evaluates the parts of an expression
starting with operators with the highest precendence. It then moves down the list until the
entire expression has been evaluated. Table 6.4 shows the precedence of the various
operators.

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 105

6: Javelin Stamp Programmers Reference

Table 6.4: Order of Operations

Priority Operations
Highest [1. (params) expr++ expr--
++EXPr —expr +expr —expr ~ !
new (typecast)

*1 %

F-

<S> >>>

<> >= <= instanceof

===

&

A

|
&&
Il
?:

Lowest = 4= -= *= [= %= >>= <<= >>>= &=
A= |=

Let’s look at the way that Java evaluates the expression x=5+3*2. The operator with the
highest precedence is located and evaluated. In our example, the multiplication operator (*)
is higher on the list than the plus (+) operator. When this is evaluated, the expression
becomes x=5+6. The operator with the next highest precedence is evaluated and the
expression becomes x=11. There is nothing left to evaluate, so Java assigns the value of 11
to the variable x and moves on to the next line of code.

You can override the evaluation order of an expression by using parenthesis. For example, if
you wanted the answer to be 16, you could write:

x=(5+3)*2
When Java encounters operators of equal precedence, it evaluates the operators from left to
right in the expression. For example, 4+2+9 produces the same result as (4+2)+9. It’sa

good coding practice to place parenthesis in expressions that has any complexity.

Special Operators

Page 106 * Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

For the most part, the Java operators will be familiar to you if you’ve used any other
programming language. A few, however, may seem odd if you haven’t used C or C++ before.

For example, the ++ and -- operators can be confusing. These special operators increment
or decrement (that is, increase by one or decrease by one) the variable they alter. Instead of
writing:

foo = foo + 1

You might write:

foo++;

That doesn’t seem like a big improvement, but you can also use these operators within other
expressions. If the ++ occurs before the variable, the increment occurs before Java uses the

value. If it occurs after the variable, the increment occurs after Java uses the value. You’ll
understand how this works if you consider the following code:

int x=10;
int y=3*++x; // y = 33 and x=11
int z=2*x++; // z = 22 and x=12

If you want to increase the value by more than just one, you can write:

x=x+10;
or
x+=10;

This also works with +, =, /, and * operators.

Another operator that is unusual is the conditional operator.

boolean expression ? true expression : false expression

This operator requires three arguments. The first is a boolean expression. If the expression
evaluates to true, the result of the second expression is returned. Otherwise, the result of

the third expression is returned. For example, the following statement assigns 0 to x if y is
equal to 10, otherwise, x is assigned a value of 100:

Javelin Stamp Manual v1.1 www.javelinstamp.com ¢ Page 107

6: Javelin Stamp Programmers Reference

x=(y==10)20:100;

Notice that two equal signs is the operator that tests for equality (y==10). A single equal
sign is for assignment only.

You might wonder about the difference between the & and && operators (or the | and | |
operators). The single character operators do bitwise operations. In other words, & takes the
bits of its two arguments and ands them together. The double character versions only work on
boolean values.

Comments

It is always a good idea to add comments to your code. This helps other people understand
your program and might even help you figure out what you were doing when you return to
your code a few weeks or months after you wrote it.

Java allows you to start a comment with two slash characters (//). After the two slashes,
Java ignores everything else on that line. If you want to make multi-line comments, start
them with /* and end them with */.

However, /** is a special type of comment known as a Java Doc comment. A special
program (javadoc) can scan Java source code and use special commands embedded in Java
Doc comments to automatically create documentation in HTML or other formats.

Control Flow
All programming languages need a way to control the program’s flow. Otherwise, your
programs would be just a list of commands.

The Javelin supports decision statements such as if and switch and loop control
statements for, while and do. These work nearly the same as their C counterparts.
Program Listing 6.2 shows a simple program that uses a £or loop. The first expression in the
for statement sets the initial conditions. The second expression tests for the end of the loop,
and the final expression modifies the loop variable at each loop.

Program Listing 6.2 - for Demo

public class forDemo { // class Declaration
public static void main() { // main Declaration
int 1i; // Create ‘i’
integer

Page 108 * Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

for (i=0;i<10;i++) System.out.println(i); // For loop, from 0
to 9
} // end main
// end class
declaration

Even if you are used to C or C++, Java’s strong typing can throw you a few curves. For
example, in C++ you might write:

int t;
t = someroutine();
if (t)
dosomething(); // call if t is not zero
else
dosomethingelse(); // call if t is zero

This won’t work in Java. Why not? The variable t is an integer but the i f statement expects
a boolean value. You’d have to write:

int t;
t = someroutine();
if (t==0)
dosomething(); // call if t is not zero
else
dosomethingelse(); // call if t is zero

Another place where Java differs from C is in the break and continue statements. With
the Javelin Stamp, as in C, you use these statements to either end a loop (in the case of
break) or go directly to the next iteration of the loop (for continue). However, these
statements have extra features in the Javelin Stamp’s language.

Consider this loop:

for (i=0;i<10;i++) {
System.out.println(i);
if (func(i)==3) break;
if (i%2==0) continue; // don’t do any more for even
// numbers
System.out.println(“0dd number”);

Javelin Stamp Manual v1.1* www.javelinstamp.com ¢ Page 109

6: Javelin Stamp Programmers Reference
}

The break statement, if executed, immediately terminates the loop. The continue
statement, just moves on to the next iteration of the loop (in this case, that prevents even
numbers from getting to the bottom of the loop).

Unlike C, Java allows you to include a label as the target of a break or continue. This
lets you terminate or continue nested loops. For example:

LoopO0:
for (x=1;x<10;x++) {
for(y=1;y<20;y++) {

if (checkexit()==true) break LoopO;
}
}

The for loop above, by the way, is functionally the same as this code:

int i=0;
while (i<10) {

There are many times when you want to test a value against several constants and take
particular actions depending on the value. You could write a series of if statements.
However, Java provides the switch statement, which is more succinct. Program Listing 6.3
shows an example of using switch. Notice that once a match occurs, the code executes
from that point — even if it encounters another case statement. This allows you to cascade
several cases that share the same code. However, most often you want each case to be
separate and you’ll want to write a break statement at the end of each case.

Program Listing 6.3 - Switch Demo

import stamp.core.*;

Page 110 « Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

public class SwDemo { // class
declaration
public static void main() { // main
declaration
while (true){ // do while
loop forever
System.out.print("Select 1-4: "); // Output
switch (Terminal.getChar()) { // run code
based on getChar
case 'l': // execute if
i1
System.out.println("Number one"); // Output
break; // exit switch
case '2': // execute if
igr
case '3': // execute if
i3
System.out.println("Either 2 or 3"); // Output
case '4': // execute if
g
System.out.println("Either 2, 3, or 4"); // Output
break; // exit switch
default: // execute if

no match above
System.out.println("You didn't enter 1-4!"); // Output

} // end switch
} // end while
} // end main
// end class
declaration

Classes and Objects

Up to this point, we have talked about objects and classes without saying too much about
what they are. You already know how to use data types such as int or char. Classes allow
you to define new data types, also know as a reference types. In the example below, we have
declared a class of type Thermostat. The Thermostat data type has fields, to store data and
methods, that can perform operations on that data. Now you can declare a variable that uses
this new data type:

int counter;
Thermostat myTemp;

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 111

6: Javelin Stamp Programmers Reference

A class does not actually do any work. That role is reserved for objects. An object is an
instance of a class.

For example, consider a class that represents a thermostat used in a building’s air conditioning
system. The class might have fields to represent the current set point temperature and the
current actual temperature. In addition, there might be methods that request an update of the
current temperature or a manual override to turn the system on and off. You can see an
excerpt of this imaginary class in shown below.

Class Thermostat {
private int id;
private int setpoint=20;
public Thermostat(int _id) { id=_id; }
public void setTemp(int temp) {

}
public int getTemp() {

}

All by itself, this class does nothing. If you want to represent a particular thermostat, you’ll
have to instantiate the object. First, you’ll declare a variable of the object’s type:

Thermostat tl;

This isn’t an object yet; it is simply a reference to an object. What’s the difference? The
variable t1 holds a reference (or pointer) to the Thermostat
object. We haven’t actually created the Termostat object yet,
so the value of tl1 is null or undefined. To create (or instantiate) a new
Thermostat object, you would write:

tl=new Thermostat;

This line of code creates a Thermostat object and stores a reference to the new object in
t1l. You might also write:

Thermostat t2=tl;

Page 112« Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

Now t2 and t1 refer to the exact same object. That means you can change the object using
either t1 or t2 and it will have the same effect.

This has an odd effect when testing for equality. If you test to see if t1 and t2 are equal
(using ==) the result will be true if an only if the two references point to the same object. For
thermostats, that is probably the right thing to do. On the other hand, consider objects like
String (the built-in object for handling text strings). You don’t care that the strings are the
same object. You are more interested to know if the strings have the same contents. Using
== tests to see if the variable refer to the exact same object, and s1 and s2 will not tell you
whether the contents of the two strings are the same. Many objects (including String)
provide an equals method that tests for logical equivalence. Then, you can use a statement
like s1.equals (s2) to test and see if the two strings have the same contents.

Methods and Parameters

The equals method is a common method that exists in every class. Of course, you can
write your own methods. Each method belongs to a class and returns a value. Methods can
also take arguments or parameters. You can have two methods in the same class that have the
same name as long as they accept different parameters. For example, you might have a
method known as print that accepts an integer argument and another one that accepts a
String. From Java’s point of view, these are two entirely different methods.

Methods return values (using the return statement). If you don’t need to return anything,
you can define the method as a void type. If you don’t specify void, then you must use a
return statement or you’ll get a compile error.

Classes can contain special methods that have the same name as the class. These special
methods are constructors and have no return type. They can, however, accept arguments.
You can have multiple constructors with different argument lists.

Consider the simple class in Program Listing 6.4. Here the construct object has three
fields. The intval field can store an integer value and the strval field stores a string.
The which field tells which of the two values were set (if any). Notice there are three
constructors. One takes no arguments (the default constructor). The other two take
arguments of the appropriate type. Each constructor sets the correct field and the which
field as appropriate.

Program Listing 6.4 - construct

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 113

6: Javelin Stamp Programmers Reference

// This program is a Library Class and must be called by another
program

public class construct { // class
Declaration

// Variable Initialization
final int NONE=0;

final int INTEGER=1;

final int STRING=2;

int intval;

String strval;

int which;

public construct() { // default
construct
which=NONE; // no value set
} // end construct
public construct(int value) { // int construct

intval=value;
which=INTEGER;

// end
construct(int)
public construct(String value) { // String
construct
strval=value;
which=STRING;
} // end
construct (String)
} // end class
declaration

When you use new to create a new instance of an object, you can provide arguments, as in:
cl = new construct(10);

The Javelin Stamp does not have garbage collection. Once you allocate memory for an
object, it remains allocated until you reset the processor. That means you have to be careful
allocating objects in response to external events, or timers. A good strategy is to allocate all
the objects you will use early in your program and refrain from allocating any more from
other points in your program.

Page 114 « Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

Another place to be careful is when Java automatically creates objects on your behalf. For
example, consider this:

String a = new String(“Hello ”);
String b = new String(“Parallax”);
a=a+b;

How many objects do you see? Two? The answer is four. There is the object that a refers to
(it contains “Hello Parallax). There is also the object that b refers to (that string contains
Parallax). However, there is also the original string that contains “Hello ” — your program no
longer refers to it, but it still takes up space in the Javelin Stamp’s memory. In fact, the Java
interpreter also creates a StringBuffer object to perform the actual concatenation, so
that’s another object for a total of four.

Where are the Pointers?

If you are familiar with C++ or assembler language, you might wonder how the Javelin Stamp
handles pointers. A common misconception is that Java doesn’t have pointers. This is not
really true. In Java, every time you use an object you are using a pointer to the object. That’s
why you say an object variable is a reference, not the object itself.

For example, suppose you want to create a linked list. Each item in the list has a reference to
the next element. Program Listing 6.5 shows a simple class that implements the elements.
The test main method builds a simple list with 4 elements. Notice that the program has only
one variable that holds a reference to a list element (head).

Program Listing 6.5 - List
public class List {

static List head=null; // pointer to
first item

String value;

List next;

// create list element (not linked)
List(String s) {
value=s;
next=null;
+ // end List

// insert item in list
void insert() {

Javelin Stamp Manual v1.1e www.javelinstamp.com ¢ Page 115

6: Javelin Stamp Programmers Reference

List ptr, last;
if (head==null) {
head=this;
return;
} // end if

// this code finds the last item in list
last=head;
for (ptr=head;ptr!=null;ptr=ptr.next)
last=ptr;
last.next=this;
} // end insert

static void printList() {
List ptr;
for (ptr=head;ptr!=null;ptr=ptr.next)
System.out.println(ptr.value);
} // end printList

static public void main() {
new List("One").insert();
new List("Two").insert();
new List("Three").insert();
new List("Four").insert();
List.printList();
} // end main
// end class
declaration

Every object has a special pseudo reference known as this. You can use this to refer to the
current object. You can see this in Program Listing 6.5. Where the List object’s insert
method sets the next link.

There are a few more interesting points to Program Listing 6.5. First, notice that head is
static. There is only one head reference no matter how many list items are in use. What’s
more the printList method is also static. This is for the same reason — it applies to the list
as a whole. The for statements that scan the list are a good example of using a £or loop in
a non-numeric situation. Remember, the first clause initializes the loop (ptr=head). The
second clause tests for the end condition (ptr==null) and the third clause sets up the next
iteration of the loop (ptr=ptr.next). These clauses are not the usual numeric
expressions, but they still work.

Page 116 « Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

In the test main program, you’ll see four new statements that create objects. They look a bit
peculiar because the program doesn’t store the object reference anywhere. Instead, it simply
calls insert directly. Since the program no longer needs the objects, there is no need to
retain a reference to them. To print the list, the program uses the printList method.

Javelin Stamp Manual v1.1 www.javelinstamp.com ¢ Page 117

6: Javelin Stamp Programmers Reference

Arrays

Java also supports array data types. You can create arrays of basic types (like int) or you
can create arrays that contain object references. All arrays in Java are objects. Create them
using syntax similar to an object:

int [] x; // reference to array
x = new int[33]; // create array with 33 elements

You can also use an alternate syntax to declare the array reference:
int x[];

Given the above declaration and new statement, you could refer to the first element of the x
array as x [0]. The last element is x [32]. You can use these just like any other variable:

x[2]1=17;
system.out.println(x[2]);

Since arrays are really objects, they may have fields. The one you’ll find particularly useful is
the 1ength field. This allows you to determine how many elements the array contains. This
is very useful when you want to loop through the entire array with a for loop (see Program
Listing 6.6).

Program Listing 6.6 - An Array

public class AnAry { // class declaration
public static void main() { // main declaration

String [] testary; // Create reference
to testary

String [] testary2 = {"One","Two","Three"}; // Cerate and fill
testary2

testary=new String[5]; // Create testary
with 5 elements

int i; // Create variable i

// initialize testary
for (i=0;i<testary.length;i++)
testary[i]=String.valueOf(i*2);

// print both arrays

System.out.println("testary");
for (i=0;i<testary.length;i++)

Page 118 « Javelin Stamp Manual v1.1 * www.javelinstamp.com

6: Javelin Stamp Programmers Reference

System.out.println(testary[i]);

System.out.println("testary2");
for (i=0;i<testary2.length;i++)
System.out.println(testary2[i]);

+ // end main
} // end class
declaration

Notice in Program Listing 6.6 that testary2 uses a set of constants enclosed in brackets as
an initializer. This is known as an array constant,

Strings

You usually don’t think of strings as relating to microcontrollers, but these days many
embedded systems do manipulate strings. You might want to write to an LCD, or receive
commands from a PC or to a modem.

Strings are objects, but they are so prevalent in many programs that Java makes a special
concession to them. You can create String objects using new like any other object. You
can also assign a string literal to a String. For example:

String modemprefix = “AT";

Like all objects, String objects have fields and methods. If you are C programmer, you
might think of String as similar to an array. However, in Java, strings have very little in
common with arrays.

One surprising feature of String is that once set, the actual String object never changes.
That’s not to say that the reference can’t change, but the actual object stays the same. This
can lead to performance problems if you are not careful. For example, suppose you have a
method named getC that retrieves a character from some source. You might write this code
to build a String object in the s variable:

String s = new String();
for (i=0;i<1000;i++) s=s+getC ();

This will work, but it is very inefficient. When you compute s+getC (), you create another

String object