Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

General Description

The MAX961-MAX964/MAX997/MAX999 are low-power, ultra-high-speed comparators with internal hysteresis. These devices are optimized for single +3 V or +5 V operation. The input common-mode range extends 100 mV Beyond-the-Rails ${ }^{\text {TM }}$, and the outputs can sink or source 4 mA to within 0.52 V of GND and VCC. Propagation delay is 4.5 ns (5 mV overdrive), while supply current is 5 mA per comparator.
The MAX961/MAX963/MAX964 and MAX997 have a shutdown mode in which they consume only $270 \mu \mathrm{~A}$ supply current per comparator. The MAX961/MAX963 provide complementary outputs and a latch-enable feature. Latch enable allows the user to hold a valid comparator output. The MAX999 is available in a tiny SOT23-5 package. The single MAX961/MAX997 and dual MAX962 are available in space-saving 8-pin $\mu \mathrm{MAX}{ }^{\circledR}$ packages.

Applications
Single 3V/5V Systems
Portable/Battery-Powered Systems
Threshold Detectors/Discriminators
GPS Receivers
Line Receivers
Zero-Crossing Detectors
High-Speed Sampling Circuits
Selector Guide

$\stackrel{\stackrel{⿺}{\mathbf{x}}}{\mathbf{\alpha}}$			2 3 0 0 \vdots 		
MAX961	1	Yes	Yes	Yes	8 SO/HMAX
MAX962	2	No	No	No	8 SO/uMAX
MAX963	2	Yes	Yes	Yes	14 SO
MAX964	4	No	Yes	No	16 SO/QSOP
MAX997	1	No	Yes	No	8 SO/HMAX
MAX999	1	No	No	No	5 SOT23

Beyond-the-Rails is a trademark and $\mu M A X$ is a registered trademark of Maxim Integrated Products, Inc.

Features
Ultra-Fast, 4.5ns Propagation Delay
Ideal for +3V and +5V Single-Supply Applications
Beyond-the-Rails Input Voltage Range
Low, 5mA Supply Current (MAX997/MAX999)
3.5mV Internal Hysteresis for Clean Switching
Output Latch (MAX961/MAX963)
TTL/CMOS-Compatible Outputs
Shutdown Mode
(MAX961/MAX963/MAX964/MAX997)
Available in Space-Saving Packages:
5-Pin SOT23 (MAX999)
8-Pin $\mu M A X ~(M A X 961 / M A X 962 / M A X 997) ~$
16-Pin QSOP (MAX964)

Ordering Information

PART	PIN-PACKAGE	TOP MARK	PKG CODE
MAX961ESA	8 SO	-	S8-2
MAX961EUA-T	8μ MAX-8	-	U8-1
MAX962ESA	8 SO	-	S8-2
MAX962EUA-T	$8 \mu M A X-8 ~$	-	U8-1
MAX963ESD	14 SO	-	S14-1
MAX964ESE	16 Narrow SO	-	S16-1
MAX964EEE	16 QSOP	-	E16-1
MAX997ESA	8 SO	-	S8-2
MAX997EUA-T	$8 \mu M A X-8 ~$	-	U8-1
MAX999AAUK+T	5 SOT23-5	+ AFEI	U5+1
MAX999EUK-T	5 SOT23-5	ACAB	U5-1

Note: All E grade devices are specified over the $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operating temperature range. MAX999AAUK is specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ operating temperature range.
+Denotes a lead-free package.
Pin Configurations

Pin Configurations continued at end of data sheet.

For pricing, delivery, and ordering information, please contact Maxim Direct at
1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, VCC to GND \qquad -0.3V to +6V All Other Pins \qquad -0.3 V to $(\mathrm{VCC}+0.3 \mathrm{~V})$
Current into Input Pins \qquad
Duration of Output Short Circuit to GND or VCCContinur Continuous Power Dissipation $\left(\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}\right)$
5-Pin SOT23 (derate $7.1 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)....... $571 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ 8-Pin SO (derate $5.88 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)........... $471 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ 8 -Pin $\mu \mathrm{MAX}$ (derate $4.10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$).

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{VCC}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}$ CM $=0 \mathrm{~V}$, COUT $=5 \mathrm{pF}, \mathrm{V}$ SHDN $=0 \mathrm{~V}$, $\mathrm{VLE}=0 \mathrm{~V}$, unless otherwise noted. $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all E grade devices. For MAX999AAUK only, Tmin to TMAX is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.) (Note 1)

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V} C \mathrm{C}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{COUT}=5 \mathrm{pF}, \mathrm{V}$ SHDN $=0 \mathrm{~V}, \mathrm{~V} \mathrm{LE}=0 \mathrm{~V}$, unless otherwise noted. $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all E grade devices. For MAX999AAUK only, TMIN to TMAX is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		TA $=+25^{\circ} \mathrm{C}$			TMIN to TMAX		UNITS
				MIN	TYP	MAX	MIN	TYP MAX	
Common-Mode Rejection Ratio	CMRR	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=-0.1 \mathrm{~V} \\ & \text { to } 5.1 \mathrm{~V} \\ & \text { (Note 5) } \end{aligned}$	$\mu \mathrm{MAX}, \mathrm{SOT} 23$		0.1	0.3		1.0	mV / V
			All other E packages		0.1	0.3		0.5	
Power-Supply Rejection Ratio	PSRR	$\mathrm{V}_{\text {CM }}=0 \mathrm{~V}$ (Note 6)			0.05	0.3		0.3	mV / V
Output High Voltage	VOH	$\begin{aligned} & \text { ISOURCE = } \\ & 4 \mathrm{~mA} \end{aligned}$	E grade	$\begin{aligned} & \text { VCC }- \\ & 0.52 \end{aligned}$			$\begin{gathered} \text { VCC - } \\ 0.52 \end{gathered}$		V
			MAX999AAUK	$\begin{aligned} & \text { VCC } \\ & 0.52 \end{aligned}$			$\begin{gathered} \text { VCC - } \\ 0.55 \end{gathered}$		
Output Low Voltage	VOL	I SINK $=4 \mathrm{~mA}$	E grade			0.52		0.52	V
			MAX999AAUK			0.52		0.55	
Capacitive Slew Current		$\mathrm{V}_{\text {OUT }}=1.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		30	60				mA
Output Capacitance					4				pF
Supply Current per Comparator	ICC	MAX961/MAX963, VCC $=5 \mathrm{~V}$			7.2	11		11	mA
		MAX962/MAX964, VCC $=5 \mathrm{~V}$			5	8		9	
		MAX997/MAX999E, VCC = 5V			5	6.5		6.5	
		MAX999AAUK, VCC $=5 \mathrm{~V}$			5	6.5		7.0	
Shutdown Supply Current per Comparator	ISHDN	MAX961/MAX963/MAX964/ MAX997, VCC $=5 \mathrm{~V}$			0.27	0.5		0.5	mA
Shutdown Output Leakage Current		MAX961/MAX963/MAX964/ MAX997, VOUT $=5 \mathrm{~V}$ and $\text { VCC }-5 V$				1		20	$\mu \mathrm{A}$
Rise/Fall Time	tr, $\mathrm{tF}^{\text {F }}$	$V_{C C}=5 \mathrm{~V}$		2.3					ns
Logic-Input High	V_{IH}			$\begin{aligned} & V_{C C} / 2 \\ & +0.4 \end{aligned}$			$\begin{aligned} & V_{C C} / 2 \\ & +0.4 \end{aligned}$		V
Logic-Input Low	VIL					$\begin{gathered} \mathrm{V}_{\mathrm{CC}} / 2 \\ -0.4 \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC} / 2} \\ -0.4 \end{gathered}$	V
Logic-Input Current	$I_{\text {IL, }} \mathrm{I}_{\text {IH }}$	VLOGIC $=0 \mathrm{~V}$ or VCC				± 15		± 30	$\mu \mathrm{A}$
Propagation Delay	tPD	5 mV overdrive (Note 7)	E grade		4.5	7.0		8.5	ns
			MAX999AAUK		4.5	7.0		10	
Differential Propagation Delay	tPD	Between any outputs (Q/Q)	wo channels or		0.3				ns
Propagation-Delay Skew	tSKEW	Between tPD-	and tPD+		0.3				ns

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{\mathrm{CC}}=+2.7 \mathrm{~V}\right.$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{COUT}=5 \mathrm{pF}, \mathrm{V}_{\text {SHDN }}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LE}}=0 \mathrm{~V}$, unless otherwise noted. $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$ is $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ for all E grade devices. For MAX999AAUK only, TMIN to TMAX is $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	TA $=+25^{\circ} \mathrm{C}$			TMIN to TMAX			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	
Data-to-Latch Setup Time	tSU	MAX961/MAX963 (Note 8)			5			5	ns
Latch-to-Data Hold Time	th	MAX961/MAX963 (Note 8)			5			5	ns
Latch Pulse Width	tLPW	MAX961/MAX963 (Note 8)			5			5	ns
Latch Propagation Delay	tLPD	MAX961/MAX963 (Note 8)			10			10	ns
Shutdown Time	tOFF	Delay until output is high-Z $\text { (> 10k } \Omega \text {) }$		150					ns
Shutdown Disable Time	ton	Delay until output is valid		250					ns

Note 1: The MAX961EUA/MAX962EUA/MAX997EUA/MAX999EUK are 100% production tested at $T_{A}=+25^{\circ} \mathrm{C}$; all temperature specifications are guaranteed by design.
Note 2: Inferred by CMRR. Either input can be driven to the absolute maximum limit without false output inversion, provided that the other input is within the input voltage range.
Note 3: The input-referred trip points are the extremities of the differential input voltage required to make the comparator output change state. The difference between the upper and lower trip points is equal to the width of the input-referred hysteresis zone. (See Figure 1.)
Note 4: Input offset voltage is defined as the mean of the trip points.
Note 5: $C M R R=\left(V_{O S L}-V_{O S H}\right) / 5.2 \mathrm{~V}$, where $\mathrm{V}_{\text {OSL }}$ is the offset at $\mathrm{V}_{\mathrm{CM}}=-0.1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OSH}}$ is the offset at $\mathrm{V}_{\mathrm{CM}}=5.1 \mathrm{~V}$.
Note 6: $\operatorname{PSRR}=\left(V_{\text {Os2 }} 2.7-\mathrm{V}\right.$ OS5.5 $) / 2.8 \mathrm{~V}$, where $\mathrm{V}_{\text {OS }} 2.7$ is the offset voltage at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$, and V os5.5 is the offset voltage at $\mathrm{VCC}=5.5 \mathrm{~V}$.
Note 7: Propagation delay for these high-speed comparators is guaranteed by design characterization because it cannot be accurately measured using automatic test equipment. A statistically significant sample of devices is characterized with a 200 mV step and 100 mV overdrive over the full temperature range. Propagation delay can be guaranteed by this characterization, since DC tests ensure that all internal bias conditions are correct. For low overdrive conditions, VTRIP is added to the overdrive.
Note 8: Guaranteed by design.

MAX961-MAX964/MAX997/MAX999
 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Typical Operating Characteristics
$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}, \mathrm{CLOAD}=5 \mathrm{pF}, 5 \mathrm{mV}\right.$ of overdrive, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Typical Operating Characteristics (continued)

$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}, 5 \mathrm{mV}\right.$ of overdrive, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

MAX961-MAX964/MAX997/MAX999
 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Typical Operating Characteristics (continued)
$\left(\mathrm{V}_{C C}=+3.0 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=5 \mathrm{pF}, 5 \mathrm{mV}\right.$ of overdrive, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Description

PIN						NAME	FUNCTION
MAX997	MAX999	MAX961	MAX962	MAX963	MAX964		
1, 5	-	-	-	-	-	N.C.	No Connection. Not internally connected.
2	4	2	2	1	1	IN-, INA-	Comparator A Inverting Input
3	3	1	1	2	2	IN+, INA+	Comparator A Noninverting Input
-	-	4	-	3, 5	-	$\begin{gathered} \text { LE, LEA, } \\ \text { LEB } \end{gathered}$	Latch-Enable Input. The output latches when LE_ is high. The latch is transparent when LE_ is low.
4	2	5	5	4,11	12	GND	Ground
-	-	-	-	-	16	N.C.	No Connection. Connect to GND to prevent parasitic feedback.
-	-	-	4	6	3	INB-	Comparator B Inverting Input
-	-	-	3	7	4	INB+	Comparator B Noninverting Input
-	-	-	-	-	5	INC-	Comparator C Inverting Input
-	-	-	-	-	6	INC+	Comparator C Noninverting Input
-	-	-	-	-	7	IND-	Comparator D Inverting Input
-	-	-	-	-	8	IND+	Comparator D Noninverting Input
8	-	3	-	8	9	SHDN	Shutdown Input. The device shuts down when SHDN is high.
-	-	-	6	9	14	QB	Comparator B Output
-	-	-	-	-	11	QC	Comparator C Output
-	-	-	-	-	10	QD	Comparator D Output
-	-	-	-	10	-	$\overline{\mathrm{QB}}$	Comparator B Complementary Output
7	5	8	8	12	13	VCC	Positive Supply Input (VCC to GND must be $\leq 5.5 \mathrm{~V}$)
6	1	6	7	13	15	Q, QA	Comparator A TTL Output
-	-	7	-	14	-	$\overline{\mathrm{Q}}, \overline{\mathrm{QA}}$	Comparator A Complementary Output

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Abstract

Detailed Description The MAX961-MAX964/MAX997/MAX999 single-supply comparators feature internal hysteresis, ultra-highspeed operation, and low power consumption. Their outputs are guaranteed to pull within 0.52 V of either rail without external pullup or pulldown circuitry. Beyond-the-Rails input voltage range and low-voltage, singlesupply operation make these devices ideal for portable equipment. These comparators all interface directly to CMOS logic.

Timing
Most high-speed comparators oscillate in the linear region because of noise or undesirable parasitic feedback. This can occur when the voltage on one input is close to or equal to the voltage on the other input These devices have a small amount of internal hysteresis to counter parasitic effects and noise.

The added hysteresis of the MAX961-MAX964/MAX997/ MAX999 creates two trip points: one for the rising input voltage and one for the falling input voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input
voltage to move quickly past the other, thus taking the input out of the region where oscillation occurs. Standard comparators require hysteresis to be added with external resistors. The fixed internal hysteresis eliminates these resistors.

The MAX961/MAX963 include internal latches that allow storage of comparison results. LE has a high input impedance. If LE is low, the latch is transparent (i.e., the comparator operates as though the latch is not present). The comparator's output state is stored when LE is pulled high. All timing constraints must be met when using the latch function (Figure 2).

Input Stage Circuitry

The MAX961-MAX964/MAX997/MAX999 include internal protection circuitry that prevents damage to the precision input stage from large differential input voltages. This protection circuitry consists of two groups of three front-to-back diodes between IN+ and IN-, as well as two 200Ω resistors (Figure 3). The diodes limit the differential voltage applied to the comparator's internal circuitry to no more than $3 V_{F}$, where V_{F} is the diode's forward-voltage drop (about 0.7 V at $+25^{\circ} \mathrm{C}$)

Figure 1. Input and Output Waveforms, Noninverting Input Varied

MAX961-MAX964/MAX997/MAX999 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Figure 2. MAX961/MAX963 Timing Diagram

Figure 3. Input Stage Circuitry

For a large differential input voltage (exceeding $3 V_{F}$), this protection circuitry increases the input bias current at IN+ (source) and IN- (sink).

$$
\text { Input current }=\frac{(\mathrm{IN}+-\mathrm{IN}-)-3 \mathrm{~V}_{\mathrm{F}}}{2 \times 200}
$$

Input currents with large differential input voltages should not be confused with input bias currents (IB). As long as the differential input voltage is less than $3 V_{F}$, this input current is less than ${ }^{2} l_{B}$.
The input circuitry allows the MAX961-MAX964/ MAX997/MAX999's input common-mode range to extend 100 mV beyond both power-supply rails. The output remains in the correct logic state if one or both inputs are within the common-mode range. Taking either input outside the common-mode range causes the input to saturate and the propagation delay to increase.

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Figure 4. Output Stage Circuitry

Output Stage Circuitry

The MAX961-MAX964/MAX997/MAX999 contain a cur-rent-driven output stage, as shown in Figure 4. During an output transition, ISOURCE or ISINK is pushed or pulled to the output pin. The output source or sink current is high during the transition, creating a rapid slew rate. Once the output voltage reaches VOH or V OL, the source or sink current decreases to a small value, capable of maintaining the V_{OH} or V_{OL} in static condition. This decrease in current conserves power after an output transition has occurred.

One consequence of a current-driven output stage is a linear dependence between the slew rate and the load capacitance. A heavy capacitive load slows down the voltage output transition.

Shutdown Mode

When SHDN is high, the MAX961/MAX963/MAX964/ MAX997 shut down. When shut down, the supply current drops to $270 \mu \mathrm{~A}$ per comparator, and the outputs become high impedance. SHDN has a high input impedance. Connect SHDN to GND for normal operation. Exit shutdown with LE low; otherwise, the output is indeterminate.

Figure 5. MAX961 PCB Layout

Applications Information

Circuit Layout and Bypassing
The MAX961-MAX964/MAX997/MAX999's high bandwidth requires a high-speed layout. Follow these layout guidelines:

1) Use a PCB with a good, unbroken, low-inductance ground plane.
2) Place a decoupling capacitor (a $0.1 \mu \mathrm{~F}$ ceramic sur-face-mount capacitor is a good choice) as close to VCc as possible.
3) On the inputs and outputs, keep lead lengths short to avoid unwanted parasitic feedback around the comparators. Keep inputs away from outputs. Keep impedance between the inputs low.
4) Solder the device directly to the printed circuit board rather than using a socket.
5) Refer to Figure 5 for a recommended circuit layout.
6) For slow-moving input signals, take care to prevent parasitic feedback. A small capacitor (1000pF or less) placed between the inputs can help eliminate oscillations in the transition region. This capacitor causes negligible degradation to tPD when the source impedance is low.

MAX961-MAX964/MAX997/MAX999
 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Pin Configurations

Chip Information

MAX961/MAX962 TRANSISTOR COUNT: 286
MAX963/MAX964 TRANSISTOR COUNT: 607
MAX997/MAX999 TRANSISTOR COUNT: 142

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

MAX961-MAX964/MAX997/MAX999
 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	. 053	. 069	1.35	1.75
A1	. 004	. 010	. 102	. 254
A2	. 049	. 065	1.245	1.651
B	. 008	. 012	0.20	0.30
C	. 0075	. 0098	0.191	0.249
D	SEE VARIATIDNS			
E	. 150	. 157	3.81	3.99
e	. 025 BSC		0.635 BSC	
H	. 230	. 244	5.84	6.20
h	. 010	. 016	0.25	0.41
L	. 016	. 035	0.41	0.89
N	SEE VARIATIDNS			
α	0°	8°	0°	8°

SIDE VIEW

VARIATIUNS:						
	INCHES		MILLIMETERS			
	MIN.	MAX.	MIN.	MAX.	N	PKG CIDES
D	. 189	. 196	4.80	4.98	16	E16-1, E16M-1, E16-4, E16-5,
S	. 0020	. 0070	0.05	0.18		
D	. 337	. 344	8.56	8.74	20	E20-1, E20-2, E20-3
S	. 0500	. 0550	1.270	1.397		
D	. 337	. 344	8.56	8.74	24	E24-1, E24-2, E24-3
S	. 0250	. 0300	0.635	0.762		
D	. 386	. 393	9.80	9.98	28	E28-1, E28M-1, E28-2
S	. 0250	. 0300	0.635	0.762		

NDTES

1. D \& E DI NDT INCLUDE MILD FLASH DR PROTRUSIGNS
2. MILD FLASH OR PROTRUSIUNS NDT TI EXCEED .006" PER SIDE.
3. CONTRDLLING DIMENSIUNS: INCHES

MEETS JEDEC MD137.
S. MARKING SHOWN IS FUR PKG. QRIENTATIUN $\square N L Y$.
6. ALL DIMENSIONS APPLY TZ BOTH LEADED (-) AND PbFREE (+) PKG. CODES
-DRAWING NOT TO SCALE-

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

NDTES

1. ALL dimensians are in millimeters unless atherwise specified.
2. MATERIAL MUST COMPLY WITH BANNED AND RESTRICTED SUBSTANCES SPEC \# 10-0131.
3. DIMENSIDNS D AND E DZ NDT INCLUDE MDLD PRDTRUSIDN.

ALLDWABLE MDLD PROTRUSIDN IS 0.15 MM (.006") PER SIDE.
LEADS TI BE CEPLANAR WITHIN 0.10 mm (. $004^{\prime \prime}$).
5. MEETS JEDEC MSO12
6. ALL DIMENSIUNS APPLY TV BZTH LEADED (-) AND PbFREE (+) PKG. CDDES.
-DRAWING NOT TO SCALE-

VARIATIUN A				
SYMBCL	INCHES		MM	
	MIN.	MAX.	MIN.	MAX.
D	. 189	. 197	4.80	5.00
N	8			
MS012	AA			
$\begin{aligned} & \text { PKG. } \\ & \text { CDDE } \end{aligned}$	$\begin{aligned} & \text { S8-2, S8-4, S8-5, S8-6F, } \\ & \text { S8-7F, S8-8F, S8-10F, } \\ & \text { S8-11F, S8-16F } \end{aligned}$			

VARIATIDN B				
SYMBCL	INCHES		MM	
	MIN.	MAX.	MIN.	MAX.
D	337	. 344	8.55	8.75
N	14			
MS012	AB			
PKG. CIDE	$\begin{aligned} & \text { S14-1, S14-4, S14-5, } \\ & \text { S14-6; S14M-4, S14M-5, } \\ & \text { S14M-6, S14M-7 } \end{aligned}$			

VARIATIUN C				
	INCHES		MM	
	MIN.	MAX.	MIN.	MAX.
	D	.386	.394	9.80
16				
N	AC			
MSO12	AC			
PKG.	S16-1, S16-3, S16-5, S16-6,			
CDDE	S16-8, S16-7F, S16-9F, S16-10F; S16M-3, S16M-6			

MAX961-MAX964/MAX997/MAX999
 Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to www.maximintegrated/packages.)

SYMBDL	MIN	NQM	MAX
A	0.90	1.25	1.45
A1	0.00	0.05	0.15
AC	0.90	1.10	1.30
b	0.35	0.40	0.50
C	0.08	0.15	0.20
D	2.80	2.90	3.00
E	2.60	2.80	3.00
E1	1.50	1.625	1.75
L	0.35	0.45	0.60
L1	0.60 REF		
e	0.95 BSC.		
e1	1.90 BSC.		
a	0°	2.5°	
PKG CDDES: U5-1, U5-2 8°			

NaTES:
ALL DIMENSIDNS ARE IN MILLIMETERS.
FIDT LENGTH MEASURED AT INTERCEPT PIINT BETWEEN DATUM A \& LEAD SURFACE.
3. PACKAGE QUTLINE EXCLUSIVE DF MILD FLASH \& METAL BURR. MILD FLASH, PRUTRUSIUN UR METAL BURR SHUULD NUT EXCEED 0.25 MM.
4. PACKAGE QUTLINE INCLUSIVE OF SLLDER PLATING.
5. MEETS JEDEC MDI78, VARIATIUN AA.
6. LEADS TI BE CDPLANAR WITHIN 0.10 mm .
7. SOLDER THICKNESS MEASURED AT FLAT SECTIUN DF LEAD BETWEEN 0.08 mm AND 0.15 mm FRDM LEAD TIP.

(N) maxim integrated			
PACKAGE OUTLINE, SOT-23, 5L			
APPRIVAL	$\begin{array}{\|c\|} \hline \text { DOCUMENT CONTROL NO. } \\ 21-0057 \end{array}$	$\stackrel{\operatorname{REV} .}{F}$	1/1

MAX961-MAX964/MAX997/MAX999

Single/Dual/Quad, Ultra-High-Speed, +3V/+5V, Beyond-the-Rails Comparators

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 96$	Initial release	-
1	$12 / 96$	Added 8-pin $\mu M A X$ packages. Correct minor errors.	$1,2,3$
2	$3 / 97$	Added dual and quad MAX963/MAX964 packages.	$1,2,3$
3	$7 / 97$	Added new MAX997 and MAX999 parts.	$1,2,3$
4	$3 / 99$	New wafer fab/process change to CB20. Update specifications and TOCs.	$2,3,4,5,6$
5	$2 / 07$	Added new Current into Input Pins in the Absolute Maximum Ratings.	2
6	$12 / 08$	Added new automotive grade MAX999AAUK part and specifications.	$1,2,3$

maxim integrated

[^0]
[^0]: Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

